B.Sc. Computer Engineering

Final Report
Copilot Application for Traffic Safety

Abstract:

A Copilot system is a network of several components that are used in order to conduct
an observing system. This system monitors and notifies the user of any possible obstacle along
the road. These obstacles include speeding limits, car accidents, and many other factors such
as sudden increases or decreases in acceleration. The main aim of the project is to design a
traffic copilot system that has the ability to conduct all the mentioned tasks alongside achieving
several criteria including accuracy, high performance, low cost...etc.

|. TABLE OF CONTENTS ‘
I I o] (3} i 0111 (=1 0] (=TT OO SR 3

O 1= o (o) i o =] £ OSSPSR 4
1. T [N ot AT] o SO PR 5
O ol o] o (=] | £ F SRR RPRURPRRRS 5

2. TraffiC CONQESTIONoveeiicie et re e beeneennees 5

3. TrAffIC SATELY ..ovieee e 5
IV. DeSign DEVEIOPMENT.........cciiieiie ittt enes 5
1. PropoSead DESIGN ...c..ocveiuieiiieieitee ittt e et te e e et e s teebesnaesteeteereenteenteennenres 5

2. Detailed High-Level SpecifiCations............ccccviieiiiie i 6
3. Detailed Low-Level SPeCITICAtIONS..........cciveiiiieiicie e 7
a) InteraCting COMPONENTScueiieieiieie ettt sre e enes 7

b) Machine Learning MOUEL............cov oo 8

V. Project Realization and Performance Optimization............ccccceevevievecie s 9
1. Planned implementation and experiments. [P1-6.a]cccccoeiiveieiieii s 9
@) TraiNiNgG DatASEL........cveiiiiiieiteiire e 9

D) TenSOrFIOW MOGEL.........coiiiiee e 11

C) APPHCALION. ...ttt bbb 16

2. Design Analysis and Feedback [P1-6.0].......cccooiiiiiiiiiii e, 20

3. Design Optimization and Improvements [P1-6.C]........cccccuoriiriiiniieniieeeeee, 21
VI, GeNEral DISCUSSIONcuveieiiieiieeiestiesite st eiestees e eseessee e eseesseesteeseesseesseeneeaseesseenseaneessens 25
1. Final Cost Analysis and DISCUSSION...........ccuriiierienienieniesieseeeeeeee e 25

2. Commercializing the Project and Relevance to Region (Social, Cultural and Political
(IS U= TSP RORPRRPPP 25
VII. ProjeCt ManAgEMENToviiiie ettt bbbt 26
1. Encountered Problems and Proposed SOIULIONScccooviiiiiiinieiencse e, 26
VI Conclusion and FULUIE WOTKSciveiiiieiieie e ee et sae e nnees 26
G L (=] £ o0 USSR 27
X APPENAICES. ..ttt bbbttt b bbbttt bbb bt 27

1. TensorFlow Model (JuPyter NOtEDOOK)ccuevveriiriiriiniiiiiisieiee e 27

Il. TABLE OF FIGUERES

Figure 1. The high-level design of the SYStEMcccoiiiiiieie i 6
Figure 2. The interacting components of the SYStEM ... 7
Figure 3. Detailed design of the TensorFIow model...........ccocveeiieiiie i, 8
Figure 4. Distribution of the dataset images OVer Classes.........cccccvvvvevveveiieiiese e 10
FIgUre 5. CNIN MOEL.... ..o et sre e enes 11
Figure 6. TensorFlow model architeCtUure..........ccveviiieiicie e 11
FIgure 7. MOGEI TFraiNINGecveivieieciecie ettt e s e e ste e esneesreenreanes 12
Figure 8. ACCUraCy and l0SS CUINVEScooiiiiiiiiieieie ettt 12
Figure 9. Model accuracy and PrediCtioNSccocueiirierineie e 14
Figure 10. CONTUSION MELFIXeiuviiiieieiieitisie sttt 15
Figure 11. Warning VOICE reCONTINGS.eiuiiririeieienieste sttt sbe et ne e 17
Figure 12. Applcation Ulcoooiiiiic et 19
Figure 13. Firebase iNtEGrationcccueiieieiieieee e ettt e e sre e ens 20

Lo O T AN o o N (oo o I ST 20

I1l. INTRODUCTION

Driving carefully and following the rules will avoid many problems, especially a car
accident. Avoiding excessive speed is the common denominator of all causes of accidents.
Beware the mistake of others, and that is the only safe way, which is to create a sufficient
distance as a safety area around the car to move within its range. These days not many people
follow this system, for this reason, we find many accidents on the streets. Because a lot of
people have bad habits on the roads such as speeding and wrong way driving also texting while
driving, for this reason, we try to build a copilot application for traffic safety. The copilot
application acts as an extra pair of eyes for the driver, monitoring their location on the road,
warning them if there are any important traffic signs, and assisting them in safely driving within
the speed limit. The main aim of the project is to design and implement a copilot application
for traffic safety that can help drivers significantly improve the safety of their driving. The
motivations behind developing this solution can be summarized in the following points.

1. Accidents

The phenomenon of traffic accidents has spread widely nowadays; either because of
the driver’s error, the lack of attention of pedestrians, or some defect in the roads and bridges,
and perhaps the accident was preordainment without the presence of any human or material
defect. The state and citizens must take into account the reasons that preserve the safety of the
passenger and pedestrians at the same time, in order to avoid frequent accidents.

2. Traffic congestion

Traffic congestion has many negative effects, as this problem increases the rate of air
pollution, which in turn affects the health of the individual and the climate, and the time that
the driver spends stuck in the congestion and may cause some accidents.

3. Traffic safety

Traffic on roads is one of the most important serious problems that our contemporary
world suffers from, and the countries of the world have noticed this problem and have put in
place some laws to alleviate it as much as possible, but they did not reach the required level,
as the number of people who die in the world annually is estimated to be more than million
people, and the number of injured as a result of road accidents reaches.

V. DESIGN DEVELOPMENT
In this chapter, a detailed description of the design and its different elements is given.

1. Proposed Design

The proposed copilot system will be able to detect the traffic labels from distance with
high accuracy. It will also have an alarming system when a critical traffic label is observed on
the road. Moreover, the system will have the ability to warn the driver when the speed limit is
exceeded. The system will also detect nearby collisions and accidents and report them to the
user in real-time. Additionally, the driver will be warned once a sudden change in acceleration
occurs.

2. Detailed High-Level Specifications

Traffic Sign Traffic Sign Critical Traffic
Smart Phone Frames Traffic Sign Regestiration Convolutional Neural Network Classification Label Alert

207 6 el @A

Traffic Database

-
-~

Traffic Speed from GPS

A(h) Au:]»)

Sudden Speed Speed Limit
Change Alert Exceeded Alert

Accident
Alert

Figure 1. The high-level design of the system

First, we have a smartphone with GPS, camera, and Internet connection. The GPS of
the smartphone is accessed to get information about the current location of the vehicle and the
speed of the vehicle is calculated using GPS data. If the current speed of the vehicle changes
abruptly, the smartphone sends an audio traffic accident alert. The smartphone is connected to
the cloud database via the Internet, and the database holds traffic data such as locations of
traffic jams, car accidents, etc. If the current location is within a certain radius from any of the
traffic events recorded in the database, the smartphone sends an audio alert to warn the driver.

Furthermore, the smartphone camera sends a live feed of the road, where the accepted
frames are sent through a pre-trained convolution neural network that classifies and recognizes
the traffic signs from these frames. The speed limit from the given sign is updated to alert the
driver when the current speed exceeds the speed limit. Moreover, when a critical traffic sign is
detected, an audio alert is sent to the driver.

3. Detailed Low-Level Specifications

a) Interacting Components
Classifier Training TensorFlow
> Model
Labelled Training Images
Convert to
TFLite Model

=

Firestore

\ J

Send Images)

Google -
Services -

Flutter App TensorFlow

N - API Lite Model

Interpreter Get Labels

Firebase
Figure 2. The interacting components of the system
i. TensorFlow

Google Brain Team is responsible for the creation of the TensorFlow open-source software
library machine. It is created for machine learning and artificial intelligence applications.
TensorFlow comes with several options, but most importantly it facilitates training and
inference of deep neural networks. It was first released in 2015, and later it was updated to
TensorFlow 2.0 in 2019. The software can be used in several programming languages. Some
of these languages are Java, JavaScript, C++, and Python. This project uses TensorFlow on
Python.

ii. TensorFlow Lite
The framework needed to run TensorFlow for Flutter applications is TensorFlow Lite. It
is a framework that comes with software packages used in ML training locally on the hardware.
It is primarily used for low-size and low-computational devices as it aids developers to run
their models through such devices. In this project, the pre-trained TensorFlow model is
converted into the TFLite format to be then integrated into the Flutter project.

iii. Flutter
Flutter is an open-source framework for developing native interfaces on iOS and Android.
This Ul framework is used to build applications from a single codebase. These applications
can be used on the web, mobile, or desktop. Flutter also uses Dart for its several features such

as Minix, isolates, and others. Dart can use Just-In-Time compilation, which allows Flutter to
offer hot reloads through development without having to create a new build.

iv. Firebase

It is a real-time database used for developing applications. It is a newly founded back-end
service and it is found on the Google Cloud Platform. This program is the reason users can
access their data from the cloud across several different platforms. It provides its users with
readily available data on their iOS or Android devices. Firebase Firestore isa NoSQL document
database. It has several uses, some of these usages are automatic scaling, high performance,
and application development. What makes Firestore a unique database is its flexibility and its
description of relationships between objects. It still comes with the basic options present in
other databases. It also syncs every user’s data across several platforms. In this application,
Firebase is integrated into the Flutter project and is used to store and retrieve the coordinates
of accidents and traffic congestions.

b) Machine Learning Model

e mm e e e e e e e e e - == -{ Training and Building the Model J- -------------------- -

a L
HesemnRn
] TER T

BS0oEn

Training
Data

[]
a

Feature Extraction

Labelled Dataset

Frame Region of Interest (ROI)

- Generation _ Selection Detection Trained
Gt TensorFlow Maodel

Smartphone —
Camera Input Frames

Traffic Sign Label
Accepted Frame

Speed Limit = 70 km/h

Rejected Frames

Figure 3. Detailed design of the TensorFlow model

This model is a machine learning one used to recognize images. The model works on
labeling the image uploaded to it in a category. The categories these images fall under are
previously taught to the model by the user through uploading labeled similar images. A training
dataset is used to train the ML model. The training data is a set of data used to teach the model
how to learn and deliver advanced results using technologies such as neural networks. It can
be supplemented with additional datasets known as validation and testing sets. Feature
extraction is the process of building values extracted from an initial set of data to aid users in
learning, generalization, and interpretation. It facilitates the process of getting important and
relevant information when there is a large data set with several resources.

Image classification is used to define the class of a certain object within an image, whilst object
detection is used in computer vision to identify objects in images. The input of image
classification is an image producing an output that is the label. The input of object detection is
an image or more producing an output that is a bounding box or more and labeling of said
boxes. Image classification’s algorithm produces a list of categories from the inputs. Object
detection’s algorithm produces categories in the image along with its bounding box.

V. PROJECT REALIZATION AND PERFORMANCE OPTIMIZATION

1. Planned implementation and experiments. [Pl-6.a]

a) Training Dataset

The TensorFlow model used in this project was trained on The German Traffic Sign
Benchmark (GTSRB), which is a multi-class, single-image classification database introduced
at the International Joint Conference on Neural Networks (IJCNN) in 2011. The database has
the following properties: single-image, multi-class classification problem, more than 40
classes, more than 50,000 images in total, and large, lifelike database, reliable ground-truth
data due to semi-automatic annotation, and physical traffic sign instances are unique within the
dataset (i.e., each real-world traffic sign only occurs once).

The training set archive is structured as follows: one directory per class, each directory
contains one CSV file with annotations ("GT-<ClassID>.csv"') and the training images.
Training images are grouped by tracks, and each track contains 30 images of one single
physical traffic sign.

The images contain one traffic sign each. Images contain a border of 10 % around the
actual traffic sign (at least 5 pixels) to allow for edge-based approaches. Images are stored in
PPM format (Portable Pixmap, P6), and image sizes vary between 15x15 to 250x250 pixels.
Images are not necessarily square, and the actual traffic sign is not necessarily centered within
the image. This is true for images that were close to the image border in the full camera image.
The bounding box of the traffic sign is part of the annotations.

",

Annotations are provided in CSV files. Fields are separated by ";” (semicolon).
Annotations contain the following information:

e Filename: Filename of the corresponding image

e Width: Width of the image

e Height: Height of the image

e ROI.x1: X-coordinate of the top-left corner of the traffic sign bounding box

e ROLyl: Y-coordinate of the top-left corner of the traffic sign bounding box

e ROI.x2: X-coordinate of the bottom-right corner of the traffic sign bounding box
e ROLy2: Y-coordinate of the bottom-right corner of the traffic sign bounding box

d class

igne

the ‘ass

IS

Classld, which

in
label. The distribution of the dataset classes is shown in the below figure.

dditionally conta

10Ns a

data annotat

ining

The tra

B img id

2000

1500 4

1000 1

500 4

(5Wo7 333§ J2A0 s2|ayaa Ag Buissed ou Jo pul ‘7]
(Buissed ou Jo pu3 ‘TH)

(Auoepuew INoQepUNSY ‘0F)

(ua) daay ‘6E)

(3ybu daay ‘gl

(y=2) 10 WbIeRS 05 “LE)

{3yBu 1o yBlegs 09 “ag)

(Aluo peauy ‘gE)

{peayE Y3| wn| ‘FE)

(peaye b wn) ‘gg)

(syun Buissed pue paads jje yo pu3 ‘zg)
(BulssouD S|eLIue Pl ‘TE)

(mousjzo1 Jo 2uemag ‘o)

{Buissouz sap3fo1g ‘67)

(BuIsSID U2IPIYD '8T)

(sueLsapag ‘(7]

(s1eufiis 21ed 97)

(3Jom peoy ‘S7)

(JyBir 2y3 U SMOoLBU PEOY BT

(peas fiaddis ‘€7)

(peos Adwing “g7)

{aaana 3gqnog ‘T7)

{3y 23 03 rand snosabueg ‘0g)

{121 243 03 2and snouabueq 5T)
{uonned jeiauas “g1)

(Aqua o LT)

(PaNqIUCId SUOY JLIFW §°E JBNO S2|NY3A ‘9T)
(s3121u3n N ST)

(de3s ‘pT)

(P12, £ T)

(peos f3uoud ‘ZT)

(uciizasiaqul au 2y3 Je Aem-o-ybiy “TT)
(W03 31323 5 J2A0 Sy o) Duissed o ‘0T)
(Buissed op 'g)

({uwA0zT) Y paads 'g)

(W00 T) Huay paads ')

[{ufw0g) M paads Jo pu3 'g)
{{ujwog) P pazds 'g)

({u/wg L) w pazds 'f)

{{u/wnpg) I paads 'g)

({u/wHos) yw pazds '7)

({u/wAgE) pwn pazds '7)

({u/wgz) uwi pazds 'g)

label_id.label_name

Figure 4. Distribution of the dataset images over classes

b) TensorFlow Model .
A Convolutional Neural Network (CNN) is a machine learning unit that analyzes data

using perceptron/computer graphs. The majority of the data is represented via photographs. A
3D vector dimension is processed using feature maps and then downsampled using the Pooling
method. Two prominent pooling approaches for downsampling image feature maps are
MaxPooling and MeanPooling. The Convolution Neural Network is a popular Deep Learning
technique. CNN's main purpose is to shrink the size of the input shape. We'll utilize four-
dimensional picture pixels in the example below, with a total of 50 photographs and 64 pixels
of data. The 4 value 3 symbolizes a color image since a picture is made up of three colors, or
RGB. Conv2D scales down the input size after receiving the input picture pixel.

Convolution Max-Pooling Convolution Max-Pooling Flatten Dense

A A A A A
A Y

G
m

i
Input n1 channels n1channels n2 channels n2 channels . t:x/

n3units Output
Figure 5. CNN model

Thus, the architecture of the TensorFlow model is chosen to be the following:

Compiling the model
Model: "sequential”

Layer (type) Output Shape Param #
conv2d (Eonv:[:)?: T:J:ne, 28, 28, 32) 2432 -
conv2d_1 (Conv2D) (None, 24, 24, 32) 25632
max_pooling2d (MaxPooling2D (None, 12, 12, 32) 2]

)

dropout (Dropout) (None, 12, 12, 32) 2]
conv2d_2 (Conv2D) (None, 10, 10, 64) 18496
conv2d_3 (Conv2D) (None, 8, 8, 64) 36928
max_pooling2d_1 (MaxPocling (None, 4, 4, 64) 2]

2D)

dropout_1 (Dropout) (None, 4, 4, 64) 2]
flatten (Flatten) (None, 1024) 2]
dense (Dense) (None, 256) 262400
dropout_2 (Dropout) (None, 256) 2]
dense_1 (Dense) (None, 43) 11051

Total params: 356,939
Trainable params: 356,939
Non-trainable params: @

Figure 6. TensorFlow model architecture

¥

After cleaning the dataset and splitting it into training and validation subsets, we
compile the TensorFlow model. Only 10 epochs are chosen to limit the chance of overfitting.

Compiling the model

Epoch 1/18

491/49]1 [==============================] - 4311s 9s/step - loss: 1.7864 - accuracy: ©.5191 - val_less: @.2724 - val_accuracy: 9.9235
Epoch 2/18

4917491 [==============================] - 595 120ms/step - loss: ©.3169 - accuracy: ©.9836 - val_loss: 8.8735 - val_accuracy: 08.9886
Epoch 3/18

491/491 [==============================] _ 585 117ms/step - loss: @.1784 - accuracy: ©.9468 - val_loss: ©.8383 - val_accuracy: 8.9983
Epoch 4/18

491/49]1 [==============================] - B@s 12lms/step - loss: 8.1281 - accuracy: ©.9606 - val_loss: @.851@ - val_accuracy: 8.9871
Epoch 5/18

491/49]1 [==============================] - 6@s 122ms/step - loss: @.1116 - accuracy: ©.9653 - val_loss: @.8361 - val_accuracy: 8.9897
Epoch 6/18

4917491 [- 59s 12@0ms/step - loss: ©.@857 - accuracy: ©.9734 - val_loss: ©.0217 - val_accuracy: ©8.9945
Epoch 7/18

4917491 [==============================] - B@s 122ms/step - loss: 8.9738 - accuracy: ©.9775 - val_loss: @.0288 - val_accuracy: 8.9952
Epoch 8/10

4917491 [==============================] - B6B@s 122Zms/step - loss: @.8655 - accuracy: ©9.9789 - val loss: 8.8172 - val_accuracy: 9.9955
Epoch 9/18

4917491 [==============================] - 595 120ms/step - loss: ©.8594 - accuracy: ©.9818 - val loss: 08.8216 - val_accuracy: 8.9948
Epoch 1@/1@

491/491 [==============================] _ 585 120@ms/step - loss: ©.8554 - accuracy: ©.9823 - val_loss: 8.0178 - val_accuracy: ©.9953

Figure 7. Model training

The accuracy and loss curves for training and validation datasets are shown in the figure

below.
Accuracy : Training Vs Validation Loss : Training Vs Validation

175

01— Faining Accuracy — __ —————————————— —— Taining Loss

Validation Accuracy 150 Validation Loss

09
125

0.8 100
075

07
0.50

06 025

0s 0.00

1] 2 4 6 B o 2 4 6]

Figure 8. Accuracy and loss curves

Testing the model on the test data results in 97.82% accuracy as shown in the following figure.

Model predictions (green: carrect, red: incorrect)

¥

Vehicles Over 3.5 Metric Tons Prohibitépeed Limit {30Km/H) Keep Right Turn Right Ahead Right-OfWay At The Next Intersection

]

Keep Right

Priority Road Road Work Ahead Only

|

Priornty Road

Slippery Road ed Limit (100Km/H)

Double Curve Dangerous Curve To The Right

<%
o
0
=
S
o
1
Iy

Keep Right

Speed Limit (70Km/H) Turn Right Ahead

Speed Limit (60Km/H] Speed Limit (30Km/H)
| —

.

Right-Of-Way At The Next Intersection Yield No Passing For Vehicles Over 3

3.5 Metnc Tons No Passing
. w)
reTTE- "
| S

Speed Limit (80Km/H)

Rught-Of-Way At The Next Intersection

-

No Entry furn Left Ahea

Speed Limit (60Km/H)

.“

o

Vehicles Over 3.5 Metric Tons Prohibitgpeed Limit (120Km/H)

Priority Road

Be General Caution Priority Road Road Narrows On The Right
Speed Limit (60KMHRassIng For Viehicles Over 3.5 Metne TorGeneral Caution Speed Limit (20Km/H)

.

»
Wild Anin Cross No vehi No Passing ¥Yield
Ahead Only Speed Limit (BOKm/H) Traffic Signals vehicles Over 3.5 Matric Ton
4
Keep Right No Passing For Vehicles Over 3.5 Metric Speed Limit (70K

Speed Umit (SOKm/H) Speed Limit

The Next Intersection Road Work Beware Of lce/Snow urn Left Ahead
Speed Limit (30Kmg-Rassing For Viehicles Over 3.5 Meatric Tons Road Work Road Work

He F D

g

OFWay At Limit (80Km/H)

v
o
D
D
5

Speed Limit (60Km/H) Speed Limit (1

H) v d

Speed Limit (60Km/H) Speed Limit {30Km/H Speed Limit {50Km/H) Priority Road
.
- - -

And Passing LimitsSpeed Limit (60Km/H p Right

Accuracy of the shown eval batch: ©.9782264449722852
Figure 9. Model accuracy and predictions

No Passing Turn Right Ahead

s Prohibited

Turn F!u;l it Ahead Road Work Speed Limit (100KNG®hssing For Vehicles Over 3.5 Metr

The following is the confusion matrix of the trained model. As it :g/s shown in the
following figure, the model is performing well since the highest predicted count label in each
class is the true label of that class.

Confusion Matrix

Speed lunit (26Kmin] o o 0 o O O 0 06 © 0O O O O O O O ©6 O ©6 0 O 0O O O O O O O

Spesd lmit (30kmin) © 5 0 0 0 0 0 0 O O 2 0 D OO O OO OO0 D00 0100 0 0
Sosed it (SO
Sposa it (6akmIT)
Specd imi (F0kmin)
Speed imit (50kmh)

End ot speed limt (B0kmin)

Speed limit (100kmh)

Speed limit (120kn © o 0 © © © © © © 0 O 0O © O ©0 O O 0 O O O 0O O © © O © O e
Right-of-way at the next intersection ¢ o 0 0 0 1 0 0 0 0 0 0 0 0 © 7 0 0 0 0 0 0 0 0 0 0 0 0
-
Stop. o o 0 © © © © ¢ © 0 O 0O © O ©0 © ©0 0 O O O 0O O © © O © O
;Z; Doudlecuve 0 © O © 0 © 0O © 0 © 06 © 0 0 0 0 © 0 © 1 © 77 0 12 0 0 0 © 0 © O O O O 0O O O O © O O O 0O
£ Bumpyresd O © O 0 O O O O O O © © O 0 O O ©O O 1 O © O 16 0 O O 3 O O O O O O O O O O O O O O O O
Roadnaowsontherigt 0 © © © 0 © 0 © 0 © © 1 © ©¢ 0 © ©O 0 © © © ©0 © O & 1 1 © ©0 ©0 O © 0 O O O 0O O © © O © O
Toffcsignat= 0 © 0 ©¢ 0 0 0 © 0 0 0 ©¢ © 0 0 1 © 0 § 0 © 0 O ©0 0 3 ¥ 0 0 © 0 ¢ 0 0 0 0 0 0 0 ¢ 0 O 0
Pegestiane 0 12 0 ©¢ 0 © 0 ©0 0 © © © ©@ ©¢ O © 0 0 1 © © 3 © O 0O 2 0 ¥ 0 3 O ©C€ 0 O 0 O O © 0 ©° O © O
Buyclescrozmng 0 0 0 0 0 0 0 0 0 © © 0 0 © 0 O © ©0 © 0 0 © © 0 0 0 0 0 0 % 0 0 0 0 0 0 0 0 © 0 0 ¢ 0
Bewareoficesow 0 1 O © 0O O 0 ©0 O © © © 1 © O © © O © © 15 0 © S O O O O 1 3 124 0 O O O O O © © O O © O
Widanimakscrossing 0 0 0 0 0 0O 0 O 0 © © © © © © © © O 1 © 3 O © O O O O O O O OO0 O O O O O O © © ©O O -0
Tumrghtahesd 0 © 0 © 0 0 0 0 0 0 0 © © O 0 © © 0 ©0 0 © 0 0 0 0 0 0 0 0 © 0 0 0 28 0 0 1 0 0 0 O O O
Tumileftaness O © ©0 © o © 0 © O © ©0 0 © © 0 © © O © O © © O O O O O O O O O © O O WM O O O O O 1 O O
Gostraghtorrght 0 © © © 0 © 0 © 0 © © © © ¢ © © © 0 1 © © © ¢ 0 0 O 0O O O © O © 0 O 0O O M9 O © O O © O

Gesraomorkn 0 0 o © @ 0 o © 0 © 0 © 0 0 0 © D 0 © o 0 0 0 o O 0 0 8 0 0 0 0 00 0 o @Goo o 0 o
s 0 0 0 0 0 0 0 0 0 000 0000000000000 oosoooooo:oo iffocono

Keplek 0 © 0 0 0 0 0 O 0 ©0 © © 0 ©0 0 O O 0 © 0 © 0 ¢ O 0 O 0O © 0 © 0 O 0 2 0 O 0 O O B O O O

Roundaboutmandatery 0 0 © 0 O 0 O O O O © O © O O O O O O O 1 O O O O O O O O O O O O O O O O 1 O O £ O

a
a
°
a
e
°
a
a
°
°
°
a
°
&

Endofnopassng 0 0 0 0 0 0 0 O 0

End of o passing by vehicles over 3.5 metrictons 0 0 o o o o o o o 0o 0o © 0 o 0 0O o o L o o 0 L] a o o o o 0 a5
sz x E ®raE F e E %3 s0 % EE X0 i3 LEC S PR EEIYIEeEEeEeR Rt
88 Z = 8= 58 2§ ;§FE RS Es5 5 g5 2 ¢ Forozoefofoid
5 8 v o2 oz 22 8 F £ ¢ s 0 F f: 3 585 ¢ B EEEREREEEEE E 2R
g £ £ ErR 4 % g §¢¢° 5oy I 3 b E 2§ @ & I
T3 (: 1331833 & °f A £ g2 f i HI §23
L3 N - 1 i g H - : © 3 ‘ H

B0 H EE H il
E § 33 ° z
3 4 H £
5 :

Predicted labels

Figure 10. Confusion matrix

C) Application J
To limit the possible confusion in the detection of traffic signs from the smartphone
camera feed, we limited the number of classes used in the application to the following 20 labels:

Label Sign Label

Children Crossing Speed Limit 10

Sign
Road \ﬁ‘,
Crosswalk Speed Limit 20
Don’t Enter c Speed Limit 30
No Vehicles O Speed Limit 40
Don’t Stop OO<) Speed Limit 50
S

Give Road v Speed Limit 60
Main Road @ Speed Limit 70
No Overtaking . Speed Limit 80
No Parking ® Speed Limit 90
Stop @ Speed Limit 100

Next, we recorded the warning voice notifications to be used in the application.

Figure 11. Warning voice recordings

After coding the application in Flutter, we build and export the Android project. Then,
we used Android Studio to design the interface of the Android application.

<m [h

0 km 0 km

Current Total
distance distance

Detected signs

0 km

Current
distance

Detected signs

Inference Time
GPS Staus
GPS accuracy
Confidence
Camera

Notification

O km

Total
distance

640*+480

O

km/h

0 km O km

Current Total
distance distance

include

Detected signs

Speed limit 80
km/h

Confidence: 80%
Speed limit 80
km/h

Confidence: 80%
Speed limit 80
km/h

Confidence: 80%

Speed limit 80
km/h

Confldence: BO%

Inference Time 640*480
GPS Staus

GPS accuracy

Confidence

Camera

Notification

Figure 12. Application Ul

The Firebase plugins were also integrated into the application and the Android app was
registered into the application’s project settings.

car-copilot

Project settings

General Cloud Messaging Integration Service accounts Data privacy Users and permissions App Check

Your project

Project name car-copilot "
Project ID (3) car-copilot
Project number @) 235510746378

eur3 (europe-west)

Environment

This setting customises your praject for different stages of the app lifecycle

En

ironment type Unspecified #*

Public settings

shown to the public
Public-facing name (3 project-235510746378 /‘

support email (3 trafficopilot@gmail.com -

Your apps

Android apps

SDK setup and configuration

;I carcopilot
=
— / com.carcopilot

ﬁ See SDK instructions ¥ google-services.json

App ID (B

1:235510746378:android:ee9310dd96658c48ea7ef3

App nickname

carcopilot #*

Package name
com.carcopilot

SHA certificate fingerprints (@] Type @

Add fingerprint

Remove this app

Figure 13. Firebase integration

Finally, the app icon was chosen to be the following icon.

CarCopilot

Figure 14. App icon

2. Design Analysis and Feedback [P1-6.b]
The experiments needed to test the major functionalities of the app are as follows:

1) Installing and launching the application

2) Accurately calculating the speed of the moving vehicle
3) Detecting a speed limit traffic sign with high accuracy
4) Detecting a close traffic sign

5) Detecting a traffic sign from afar

6) Exceeding the speed limit warning

7) Detecting a car accident or a collision nearby

The tasks were distributed as follows:

Shahad Alaradi database and writing the app code

Shaikha Almutairi database and writing the app code

Manar Fzaie check the labels and write the app code

Raghad Alshammari building the TensorFlow model

Maha Alkhars training the model and printing the accuracy metrics

3. Design Optimization and Improvements [P1-6.c]

Upon testing the application, the application worked as predicted. The proposed copilot
application was able to detect the traffic labels from distance with high accuracy. The alarming
application sent a verbal notification when a critical traffic label was detected. Moreover, the
application warns the driver when the speed limit is exceeded. However, due to the limitations
of an existing dataset of nearby collisions and accidents, the application could not report them
to the user in real time. The following are screenshots of the copilot application.

The experiments were conducted during the daytime and proved to be successful, and the

results are shown below:

Experiment Outcome Screenshot/Details
Installing and Success 819 @ - T
launching the
application

0

km/h

0.0m

Current
distance

Inference Time
Satellite

GPS Staus

Threads

Confidence

Camera

Natification

om

Total
distance

5698ms

0/6

Waiting for GPS
S5m

-1 +

0.70

N/
Calculating the Success 839 8 b o it
speed of the moving
vehicle
km/h
7247 m 7247 m
Current Total
distance distance
Inference Time 2220ms
Satellite 0/6
GPS Staus Waiting for GPS
GPS accuracy 5m
Threads -9 +
Confidence 0.70
Camera]
Notification
Detecting a 100 Success 53 8 > o wan

km/hr speed limit
traffic sign with high
accuracy

Inference Time
Satellite

GPS Staus
GPS accuracy

Threads
Confidence
Camera

Notification

3134ms
0/6
Waiting for GPS

5m

-9 +

0.70

»

Detecting a 60 km/hr
speed limit traffic
sign with high
accuracy

Success

834 & B

Inference Time
Satellite
GPS Staus

GPS accuracy
Threads
Confidence

Camera

Notification

92.97%

2864ms
0/6
Waiting for GPS

0.70

Detecting a stop sign

Success

837 & B

Inference Time

Satellite
GPS Staus

GPS accuracy
Threads
Confidence

Camera

Notification

2988ms

0/6

Waiting for GPS
Sm

0.70

Detecting a traffic
sign from afar

Success

8:36 & B PR Fil |

93'“ overtake 87.89%

T

Inference Time 2967ms
Satellite 0/6
GPS Staus Waiting for GPS

GPS accuracy 5m

Threads -9 +,
Confidence 0.70
Camera

Notification »

Exceeding the speed
limit warning

Success

840 & B w4l

85

km / h

709.8 m 709.8 m

Current Total
distance distance

Detected signs

stop

Confidence: 98.83%

dont overtake

Confidence: 87.89%

speed limit 60

Confidence: 90.63%

speed limit 40

Confidence: 87.89%

®ODO

—~

Detecting a car
accident or a
collision nearby

Failure

Due to the limitations of no
existing dataset of nearby
collisions and accidents, the
application could not report
them in real-time

®

However, the traffic copilot app performs a computationally expensive task. As a result,
there are several limitations:

- Due to phone camera limitations, traffic sign identification may fail at night and in poor
lighting situations.

- The software is trained on German road signs. However, because the signs in many
nations are extremely similar, the software should function there as well. Unfortunately,
there is still little support for speed restrictions in Kuwait.

- There is no support for city/place signs that may reduce the speed limit in accordance
with local traffic laws.

- Due to the camera's limited view angle, traffic signs in sharp turns are occasionally
missed.

- Due to the computational power needed for the traffic detection to work correctly, low-
performance phones may cause road signs to be missed or their detection would be
false.

V1. GENERAL DISCUSSION

1. Final Cost Analysis and Discussion

The development and building of the application did not result in extra costs due to the
pre-existing availability of the smartphone used to test the application and the laptop used to
code, develop, and simulate the application. The sensors and camera used are also available in
the smartphone and hence no external camera or sensors were used in the development of this
solution. A similar existing solution is an iOS app called Radarbot which is a GPS navigator
that specializes in speed cameras. The combines real-time warnings with a radar detection alert
system available offline. Radarbot is a strong program that combines radar alerts, real-time
traffic alerts, and particular speed restriction warnings for various vehicles (cars, motorcycles,
trucks, and commercial vehicles). However, the app costs 20 KWD to buy from the App Store
to use all its features. Moreover, it does not detect real-time traffic signs using the phone camera
and relies on a dataset that stores and retrieves all the info related to speed limits.

2. Commercializing the Project and Relevance to Region (Social, Cultural
and Political issues)

Traffic apps have built quite a following to them over the years. This following has
been on the increase year by year due to several benefits that have been shown not only
individually but also on a societal scale. Traffic apps operate in a way it gives their users real-
time updates using certain variables such as geographic information, cell phone data, and
municipal sensors to enable them to reach their destination quicker and faster. With citizens
managing their time and their car rides, the presence of cars in the streets will be lesser causing
lower pollution. It is sound pollution from car honking or air pollution from harmful gasses
being transmitted from vehicles. Furthermore, the air pollution caused by traffic congestion is
the result of the increase in carbon monoxide emitted from said vehicles, contributing to the
increase in 0zone concentration and amplification of global warming. By lessening the problem

of mere traffic, the smaller picture, we manage a more complicated one of pollution i.e., the

bigger picture.

VIl. PROJECT MANAGEMENT

1. Encountered Problems and Proposed Solutions
Some of the encountered problems during our project are listed in the below table.

Encountered Problem

Proposed Solution

Due to phone camera limitations, traffic sign
identification may fail at night and in poor
lighting situations.

Advise users to use the application during the
daytime. Another solution that may allow the
phone camera to have a night vision can be
further researched and developed.

There is no support for city/place signs that
may reduce the speed limit in accordance
with local traffic laws.

Collect a new training dataset of Kuwaiti
traffic signs and train the model using them.

Due to the camera's limited view angle,
traffic signs in sharp turns are occasionally
missed.

Develop a solution that can incorporate the
new flagship phone camera's wide-vision
lenses.

Due to the computational power needed for
the traffic detection to work correctly, low-
performance phones may cause road signs to
be missed or their detection would be false.

Develop the application to use a smaller/less
complex model and to use less computational
power so that it can run on older phones
efficiently.

The software is trained on German road
signs. However, because the signs in many
nations are extremely similar, the software
should function there as well.

Collect a new training dataset of Kuwaiti
traffic signs and train the model using them.

Due to the limitations of no existing dataset
of nearby collisions and accidents, the
application could not report them in real-
time

Ask the local Traffic Authority for
permission to access the national datasets of
accidents and traffic jams.

VIIl. CONCLUSION AND FUTURE WORKS

In conclusion, accidents are one of the most reasons behind death. Having an assisting
system that helps and warns the driver about possible obstacles along the road might reduce
the risks of car accidents. The project will be able to conduct a design that works as a copilot
that notifies the driver of possible sources of risk. This design has gone through several
engineering design steps that started with defining the problem, searching for possible
solutions, evaluating them, and choosing one. The choosing procedure was conducted using a
decision matrix that determined the solution based on weighted criteria based on their
importance to decide the most suitable solution. Moreover, the design was conducted following
several requirements and criteria. It was also designed considering several constraints. In the
future, an accident warning system that can determine the location of the vehicle and notify the

rescue department of the occurrence of an accident can be added and will be available to all
people to use it.

IX. REFERENCES

Fernandes, B. (2015). Mobile Application for Automatic Accident Detection and multimodal
alert. IEEE, 1-5.

Godsmark, P. (2014). Autonomous Vehicles: Are we ready? Focus on the future.

KIM, J., Kim, K., Yoon, D., Koo, Y., & Han, W. (2016). Fusion of Driver-information Based
Driver Status Recognition for Co-pilot System. 1V, 19-22.

Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., & Kammel, S. (2011). Towards
Fully Autonomous Driving: Systems and Algorithms. 1V, 5-9.

Michalke, T., & Kastner, R. (2011). The Attentive Co-Pilot. IEEE, 1-18.

Noh, S. (2015). Co-pilot Agent for Vehicle Cooperative and Autonomous Driving. ETRI
Journal, 1-12.

Noh, S., An, K., & Han, W. (2015). Situation Assessment and Behavior Decision for
Vehicle/Driver Cooperative Driving in Highway Environments. IEEE, 1-8.

Rayle, Shaheen, S., Chan, N., Dai, D., & Cervero, R. (2014). App-Based, On-Demand Ride
Services. UCTC.

Thrun, S., Laugier, C., & Yoder, D. (2012). Autonomous Driving. handbook of intell, 12171-
1310.

Urmson, C. (2008). Autonomous driving in urban environments. Field Robot, 425-466.

X. APPENDICES
1. TensorFlow Model (JuPyter Notebook)

v Importing necessary tools

import os

import pandas as pd

import numpy as np

from sklearn.model selection import train_test split
from sklearn.metrics import accuracy_score

import matplotlib.pyplot as plt

import matplotlib.pyplot as mpimg

import tensorflow as tf
print("TF version: ", tf._version_)

TF version: 2.8.0
~ Getting the dataset ready

from google.colab import drive
drive.mount('/content/drive',force_remount=True)

train_df = pd.read_csv('/content/drive/MyDrive/gtsrb-german-traffic-sign/Train.
train_df.head()

train_df.describe()

train_df = train_df.drop(['Width', 'Height', 'Roi.X1', 'Roi.Y1', 'Roi.X2', 'Roi
train_df.head()

~ Getting images and their labels

Load sign names file
sign_names = pd.read_csv("/content/drive/MyDrive/gtsrb-german-traffic-sign/sign
sign_names.set_index("ClassId")

sign_names.head(n=10)

Create pathnames from image Id's
filenames = ['/content/drive/MyDrive/gtsrb-german-traffic-sign/' + fname for fn
filenames[:10]

from google.colab import drive
drive.mount('/content/drive")

len(filenames)

labels = train_df['ClassId'].to_numpy()
labels.shape[0]

unique_signs = np.unique(labels)
len(unique_signs)

def group_img_id to_1bl(lbs_ids, lbs names):

Utility function to group images by label

arr_map = []

for i in range(©@, lbs_ids.shape[©@]):
label id = 1bs_ids[i]
label name = 1lbs names[lbs _names["ClassId"] == label id]["SignName"].va
arr_map.append({"img_id": i, "label id": label id, "label name": label_

return pd.DataFrame(arr_map)

ids_to_signnames = group_img id to_lbl(labels, sign_names)
ids_to_signnames

img_id 1label_id label_name

0 0 20 Dangerous curve to the right

1 1 20 Dangerous curve to the right

2 2 20 Dangerous curve to the right

3 3 20 Dangerous curve to the right

4 4 20 Dangerous curve to the right
39204 39204 42 End of no passing by vehicles over 3.5 metric ...
39205 39205 42 End of no passing by vehicles over 3.5 metric ...
39206 39206 42 End of no passing by vehicles over 3.5 metric ...
39207 39207 42 End of no passing by vehicles over 3.5 metric ...
39208 39208 42 End of no passing by vehicles over 3.5 metric ...

39209 rows x 3 columns

labels numpy = ids_to_signnames.to_numpy()

count_of_each_sign = pd.pivot_table(ids_to_signnames,index=["label_id","label_n
count_of_each_sign

img_id

label_id label_name
0 Speed limit (20km/h) 210
1 Speed limit (30km/h) 2220
2 Speed limit (50km/h) 2250
3 Speed limit (60km/h) 1410
4 Speed limit (70km/h) 1980
5 Speed limit (80km/h) 1860
6 End of speed limit (80km/h) 420
7 Speed limit (100km/h) 1440
8 Speed limit (120km/h) 1410
9 No passing 1470
10 No passing for vehicles over 3.5 metric tons 2010
1" Right-of-way at the next intersection 1320
12 Priority road 2100
13 Yield 2160

count_of_each_sign.plot(kind="'bar', figsize=(15, 7))

<matplotlib.axes. subplots.AxesSubplot at Ox7fb42ec88910>

2000 1

1500 1

7 | | | | I I
- -

~ Visualizing the dataset

(A R R R R RERRRERERRRRRERRRRRRRRIRRRRRERRRERRERRERE
labels _numpy

array([[@, 20, 'Dangerous curve to the right'],
[1, 20, 'Dangerous curve to the right'],
[2, 20, 'Dangerous curve to the right'],

cees
[39206, 42, 'End of no passing by vehicles over 3.5 metric tons'],
[39207, 42, 'End of no passing by vehicles over 3.5 metric tons'],
[39208, 42, 'End of no passing by vehicles over 3.5 metric tons']],
dtype=object)

for n in range(5):
plt.figure()
i = np.random.randint(@, high=len(filenames), dtype='int"')
plt.imshow(mpimg.imread(filenames[i]))
plt.title(labels_numpy[i][2])
plt.axis('off")

Yield

e

4

Mo vehicles

i

Speed limit (30km/h)

Double curve

italicised text## One-hot encoding

labels = tf.keras.utils.to_categorical(labels, 43)
labels

array([[o., ©0., 0., ..., 0., 0., 0.],
[0., 0., 0., s

0., 0., ..., 0., 0., 0.1,

[e.,

cees

[0., 0., 0., , 0., 0., 1.1,

[0., 0., 0., , 0., 0., 1.1,

[0., 0., 0., ..., 0., 0., 1.]], dtype=float32)
[g TN THEE. TR o

labels[0]

0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0.,
.], dtype=float32)

.
—_ -

len(labels)

39209

~ Splitting our data into train and validation sets

Create X & y variables
X = filenames
y = labels

X_train, X val, y train, y val = train_test split(X, y, test size = 0.2, randon
len(X_train), len(y_train), len(X_val), len(y_val)

(31367, 31367, 7842, 7842)

v Processing image into Tensors

Indented block

importing necessary tools

import datetime

import os

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy score

import matplotlib.pyplot as plt

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Activation, Dropout, Flatten, Dense, Conv2C
from tensorflow.math import confusion_matrix

import matplotlib.image as mpimg

import tensorflow as tf
print("TF version: ", tf._version_)

TF version: 2.8.0
device_name = tf.test.gpu_device name()
if "GPU" not in device_name:
print("No")

else:
print(device_name)

[/device:GPU:@

print(tf.test.is_gpu_available())
WARNING:tensorflow:From <ipython-input-3-ae932be897c3>:1: is_gpu_available (from ten
Instructions for updating:

Use “tf.config.list physical devices('GPU")" instead.
True

Getting our data ready

from google.colab import drive
drive.mount('/content/drive',force_remount=True)

Mounted at /content/drive

train_df = pd.read_csv('/content/drive/MyDrive/gtsrb-german-traffic-sign/Train.
train_df.head()

Width Height

1

2

K}

27

28

29

2

26
27

26

27

train_df.describe()

count

mean
std
min
25%
50%
75%

max

train_df = train_df.drop(['Width',

Width

39209.000000

50.835880
24.306933
25.000000
35.000000
43.000000
58.000000

243.000000

train_df.head()

ClassId
0 20
1 20
2 20
3 20
4 20

v Getting images and their labels

Load sign names file

Roi.X1 Roi.Y1 Roi.X2

Height

39209.000000

50.328930
23.115423
25.000000
35.000000
43.000000
58.000000

225.000000

22

23

24

2

Roi.X1

39209.000000

5.999515
1.475493
0.000000
5.000000
6.000000
6.000000

20.000000

'"Height',

Path
Train/20/00020_00000_00000.png
Train/20/00020_00000_00001.png
Train/20/00020_00000_00002.png
Train/20/00020_00000_00003.png

Train/20/00020_00000_00004.png

Roi.Y2 ClassId

Pi

Roi
39209.000(
44.728:
21.971
20.000(
30.000(
38.000(
52.000(

205.000(

20 20 Train/20/00020_00000_00000.|
22 20 Train/20/00020_00000_00001.|
21 20 Train/20/00020_00000_00002.|
29 2N Train/20/0NN2N NNNNN NNNNR
Roi.Y1 Roi.X2
39209.000000 39209.000000
5.962381 45.197302
1.385440 23.060157
5.000000 20.000000
5.000000 29.000000
6.000000 38.000000
6.000000 53.000000
20.000000 223.000000
'Roi.X1', 'Roi.Y1',

'Roi.X2', 'Roi

sign_names = pd.read_csv("/content/drive/MyDrive/gtsrb-german-traffic-sign/sign
sign names.set _index("ClassId")

sign_names.head(n=10)

ClassId SignName

0 0 Speed limit (20km/h)
1 1 Speed limit (30km/h)
2 2 Speed limit (50km/h)
3 3 Speed limit (60km/h)
4 4 Speed limit (70km/h)
5 5 Speed limit (80km/h)
6 6 End of speed limit (80km/h)
7 7 Speed limit (100km/h)
8 8 Speed limit (120km/h)

label map = sign_names['SignName'].to_dict()

Create pathnames from image Id's
filenames = ['/content/drive/MyDrive/gtsrb-german-traffic-sign/' + fname for fn
filenames[:10]

["/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020 00000 00000.png’,
'/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00001.png"',
'/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00002.png"',
'/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00003.png',
'/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_ 00000 00004 .png',
'/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020 00000 00005.png',
'/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00006.png"',
'/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00007.png',
'/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00008.png"',
'/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_ 00000 00009.png"]

len(filenames)

39209
labels = train_df['ClassId'].to_numpy()
labels.shape[9]

39209
unique_signs = np.unique(labels)
len(unique_signs)

43

def group_img id to 1bl(lbs_ids, lbs names):

Utility function to group images by label

arr_map = []

for i in range(0@, 1lbs_ids.shape[©@]):
label id = 1lbs_ids[i]
label name = 1bs _names[lbs_names["ClassId"] == label id]["SignName"].va
arr_map.append({"img_id": i, "label id": label_id, "label name": label_

return pd.DataFrame(arr_map)

ids_to_signnames = group_img id to 1lbl(labels, sign_names)
ids_to_signnames

img_id 1label_id label_name

0 0 20 Dangerous curve to the right

1 1 20 Dangerous curve to the right

2 2 20 Dangerous curve to the right

3 3 20 Dangerous curve to the right

4 4 20 Dangerous curve to the right
39204 39204 42 End of no passing by vehicles over 3.5 metric ...
39205 39205 42 End of no passing by vehicles over 3.5 metric ...
39206 39206 42 End of no passing by vehicles over 3.5 metric ...
39207 39207 42 End of no passing by vehicles over 3.5 metric ...
39208 39208 42 End of no passing by vehicles over 3.5 metric ...

39209 rows x 3 columns

labels numpy = ids_to_signnames.to_numpy()

count_of_each_sign = pd.pivot_table(ids_to_signnames,index=["label id","label n
count_of_each_sign

img_id

label_id label_name
0 Speed limit (20km/h) 210
1 Speed limit (30km/h) 2220
2 Speed limit (50km/h) 2250
3 Speed limit (60km/h) 1410
4 Speed limit (70km/h) 1980
5 Speed limit (80km/h) 1860
6 End of speed limit (80km/h) 420
7 Speed limit (100km/h) 1440
8 Speed limit (120km/h) 1410
9 No passing 1470
10 No passing for vehicles over 3.5 metric tons 2010
1" Right-of-way at the next intersection 1320
12 Priority road 2100
13 Yield 2160
14 Stop 780
15 No vehicles 630
16 Vehicles over 3.5 metric tons prohibited 420
17 No entry 1110
18 General caution 1200
19 Dangerous curve to the left 210
20 Dangerous curve to the right 360
21 Double curve 330
22 Bumpy road 390

~ Visualizing the dataset

Lo ¥ Dand waraw | V4 AENN

labels numpy

array([[@, 20, 'Dangerous curve to the right'],
[1, 20, 'Dangerous curve to the right'],
[2, 20, 'Dangerous curve to the right'],

cees
[39206, 42, 'End of no passing by vehicles over 3.5 metric tons'],
[39207, 42, 'End of no passing by vehicles over 3.5 metric tons'],

[39208, 42, 'End of no passing by vehicles over 3.5 metric tons']],

for n in range(5):
plt.figure()
i = np.random.randint(@, high=len(filenames), dtype='int')
plt.imshow(mpimg.imread(filenames[i]))
plt.title(labels _numpy[i][2])
plt.axis('off")

Speed limit (30km/h)

s 1

v One-hot encoding

Converting the labels into one hot encoding
labels = tf.keras.utils.to_categorical(labels, 43)
labels[0]

array([0., ©., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
9., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
9., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)

T A
len(labels)

39209
_ onil—

v Creating Validation set

Create X & y variables
X = filenames
y = labels

Splitting our data into train and validation sets
X_train, X val, y train, y val = train_test split(X, y, test size = 0.2, randon
len(X_train), len(y_train), len(X_val), len(y_val)

(31367, 31367, 7842, 7842)

~ Processing image and turning into Tensors

[B C LI B
IMG_SIZE = 32

def process_image(image_path):

Takes an image file path and turns the image into a Tensor.

Read in an image file

image = tf.io.read_file(image_path)

Turn the jpeg image into numerical Tensor with 3 colour channels (Red, Gr

image = tf.image.decode png(image, channels=3)

Convert the colour channel values from ©-255 to ©-1 values
image = tf.image.convert image dtype(image, tf.float32)

Resize the image to our desired value (32, 32)

image = tf.image.resize(image, size=[IMG_SIZE, IMG_SIZE])
return image

v Turning data into batches

Create a simple function to return tuple

def get_image_label (image_path, label):
Takes an image file path name and the assosciated label,
processes the image and reutrns a typle of (image, label).
image = process_image(image_path)
return image, label

Define batch size
BATCH_SIZE = 64

Create a function to turn data into batches
def create_data_batches (X, y=None, batch size=BATCH_SIZE, valid data=False, te

Creates batches of data out of image (X) and label (y) pairs.

Shuffles the data if it's training data but doesn't shuffle if it's validat

a.

Also accepts test data as input (no labels).

If the data is a test dataset, we probably don't have have labels

if test_data:
print("Creating test data batches...™)
data = tf.data.Dataset.from_tensor_slices((tf.constant(X)))
data_batch = data.map(process_image).batch(BATCH_SIZE)

If the data is a valid dataset, we don't need to shuffle it

elif valid data:
print("Creating validation dataset batches...")
data = tf.data.Dataset.from_tensor_slices((tf.constant(X), tf.constant(
Create (image, label) tuples (this also turns the iamge path into a
data_batch = data.map(get_image label).batch(BATCH_SIZE)

else:
print("Creating training dataset batches...")
Turn filepaths and labels into Tensors
data = tf.data.Dataset.from tensor_slices((tf.constant(X), tf.constant(
Shuffling pathnames and labels before mapping image processor functic
data = data.shuffle(buffer_size=len(X))
Create (image, label) tuples (this also turns the iamge path into a

data_batch = data.map(get_image label).batch(BATCH_SIZE)
return data batch

Creating training and validation batches
train_data = create_data_batches(X train, y train)
val data = create_data_batches(X val, y val, valid _data=True)

Creating training dataset batches...
Creating validation dataset batches...

Check out the different attributes of our data batches
train_data.element _spec, val data.element_spec

((TensorSpec(shape=(None, 32, 32, 3), dtype=tf.float32, name=None),
TensorSpec(shape=(None, 43), dtype=tf.float32, name=None)),
(TensorSpec(shape=(None, 32, 32, 3), dtype=tf.float32, name=None),
TensorSpec(shape=(None, 43), dtype=tf.float32, name=None)))

Visualizing Data Batches

Create a function for viewing images in a data batch
def show_25 images (images, labels):

Displays a plot of 25 images and their labels from a data batch.
plt.figure(figsize=(20,20))
for i in range(25):
ax = plt.subplot(5, 5, i+l1)
plt.imshow(images[i])
plt.title(label map[unique_signs[labels[i].argmax()]])
plt.axis("off")

Visualizing traing batch
train_images, train_labels = next(train_data.as_numpy_iterator())
show_25_images(train_images, train_labels)

Keep left Speed limit (70km/h) End of no passing by vehicles over 3.5 metric tons

Speed limit (80kmy/h)

Road work

Speed limit (120km/h) Speed limit (120km/h)

Speed limit (70km/h)

i

Speed limit (50km/h) Slippery road

Keep right

~ Building the model

Setup input shape to the model
INPUT_SHAPE = [IMG_SIZE, IMG_SIZE, 3]

Setup the output shape
OUTPUT_SHAPE = len(unique_signs)

Creating CNN Model
def traffic_sign net(input_shape):
model = Sequential()

No passing for vehicles over 3.5 metric tons

Slippery road Turn right ahe

Speed limit (100

No passing

Speed limit (601

Speed limit (80km/h)

Bumpy roa

Priority road Mo passinc
-

model.add(Conv2D(filters=32, kernel size=(5, 5), activation='relu', input_s

model.add(Conv2D(filters=32, kernel size=(5, 5), activation='relu'))
model.add(MaxPool2D(pool size=(2, 2)))

model.add(Dropout(rate=0.25))

model.add(Conv2D(filters=64, kernel size=(3, 3), activation='relu'))
model.add(Conv2D(filters=64, kernel size=(3, 3), activation='relu'))
model.add(MaxPool2D(pool size=(2, 2)))

model.add(Dropout(rate=0.25))

model.add(Flatten())

model.add(Dense(256, activation='relu'))
model.add(Dropout(rate=0.5))

model.add(Dense(43, activation='softmax'))

return model

Create a function that creates model
def create model(input_shape=INPUT_SHAPE, output_shape=OUTPUT_SHAPE):
Setup the model layers
model = traffic_sign net(input_shape=input_shape)
Compile the model
print("Compiling the model™)
model.compile(
optimizer=tf.keras.optimizers.Adam(),
loss="categorical_ crossentropy',
metrics=["'accuracy']

)

return model
model = create_model()
model. summary ()

Compiling the model
Model: "sequential™

Layer (type) Output Shape Param #
“comvzd (Comzd) (Nome, 28, 28, 32) 2432
conv2d_1 (Conv2D) (None, 24, 24, 32) 25632
max_pooling2d (MaxPooling2D (None, 12, 12, 32) 0

)

dropout (Dropout) (None, 12, 12, 32) 0

conv2d_2 (Conv2D) (None, 10, 10, 64) 18496
conv2d_3 (Conv2D) (None, 8, 8, 64) 36928
max_pooling2d 1 (MaxPooling (None, 4, 4, 64) 0

2D)

dropout_1 (Dropout) (None, 4, 4, 64) 0

flatten (Flatten) (None, 1024) (%]

dense (Dense) (None, 256) 262400
dropout_2 (Dropout) (None, 256) %]
dense_1 (Dense) (None, 43) 11051

Total params: 356,939
Trainable params: 356,939
Non-trainable params: ©

v Training our model

NUM_EPOCHS = 10

Build a fn to train and return a trained model
def train_model():

Trains a given model and returns the trained version.

Create a model
model = create_model()

Fit the model to the data passing it the callbacks we created
model.fit(x=train_data,
epochs=NUM_EPOCHS,
validation_data=val_data,
validation_freqg=1,
)

return model

Fit the model to data
model = train_model()

Compiling the model

Epoch 1/10
491/491 [==============================] - 4311s 9s/step - loss: 1.7064 - accuracy: |
Epoch 2/10
491/491 [==============================] - 595 120ms/step - loss: 0.3169 - accuracy:
Epoch 3/10
491/491 [==============================] - 58s 117ms/step - loss: 0.1704 - accuracy:
Epoch 4/10
491/491 [==============================] - 60s 121ms/step - loss: 0.1281 - accuracy:
Epoch 5/10
491/491 [==============================] - 60s 122ms/step - loss: 0.1116 - accuracy:
Epoch 6/10
491/491 [==============================] - 595 120ms/step - loss: 0.0857 - accuracy:

Epoch 7/10

491/491 [==============================] - 60s 122ms/step - loss:
Epoch 8/10
491/491 [==============================] - 60s 122ms/step - loss:
Epoch 9/10
491/491 [==============================] - 59s 120ms/step - loss:
Epoch 10/10
491/491 [==============================] - 59s 120ms/step - loss:

Save the entire model as a SavedModel.
Imkdir -p saved_model

model.save('/drive/MyDrive/saved_model/my_model')

0.0738

0.0655

0.0594

0.0554

accuracy:

accuracy:

accuracy:

accuracy:

new_model = tf.keras.models.load model('/drive/MyDrive/saved_model/my_model')

Check its architecture
new_model.summary ()

INFO:tensorflow:Assets written to: /drive/MyDrive/saved_model/my model/assets
Model: "sequential 2"

Layer (type)

conv2d_8 (Conv2D)

conv2d_9 (Conv2D)

Output Shape
(None, 28, 28, 32)

(None, 24, 24, 32)

max_pooling2d_4 (MaxPooling (None, 12, 12, 32)
2D)

dropout_6 (Dropout)
conv2d_10 (Conv2D)

conv2d_11 (Conv2D)

(None, 12, 12, 32)
(None, 10, 10, 64)

(None, 8, 8, 64)

max_pooling2d 5 (MaxPooling (None, 4, 4, 64)
2D)

dropout_7 (Dropout)

flatten_2 (Flatten)

(None, 4, 4, 64)

(None, 1024)

dense_4 (Dense) (None, 256)
dropout_8 (Dropout) (None, 256)
dense 5 (Dense) (None, 43)

Total params: 356,939
Trainable params: 356,939
Non-trainable params: ©

Param #

18496

36928

0

0

262400

accuracy = model.history.history['accuracy']

loss

model.history.history['loss’]

validation_loss = model.history.history['val loss']
validation_accuracy = model.history.history['val _accuracy']

plt.figure(figsize=(15, 7))

plt.subplot(2, 2, 1)

plt.plot(range(NUM_EPOCHS), accuracy, label='Training Accuracy')
plt.plot(range(NUM_EPOCHS), validation_accuracy, label='Validation Accuracy')
plt.legend(loc="upper left')

plt.title('Accuracy : Training Vs Validation ')

plt.subplot(2, 2, 2)

plt.plot(range(NUM_EPOCHS), loss, label='Training Loss')
plt.plot(range(NUM_EPOCHS), validation_loss, label='Validation Loss')
plt.title('Loss : Training Vs Validation ')

plt.legend(loc="upper right')

plt.show()
Accuracy : Training Vs Validation Loss : Training ¥s Validation
10 - 175 —
—— Training Accuracy —— Training
Validation Accuracy 150 Validati
09
125
0.8 100
075
07
050
0.6 0.25
05 1 i i , . 0004
0 2 4 B 8] 2 4 B 8

Creating test dataset batches

test_df = pd.read_csv('/content/drive/MyDrive/gtsrb-german-traffic-sign/Test.cs
test_df = test_df.drop(['Width', 'Height', 'Roi.X1', 'Roi.Y1', 'Roi.X2', 'Roi.Y
test_df.head()

ClassId Path
0 16 Test/00000.png
1 1 Test/00001.png
2 38 Test/00002.png
3 33 Test/00003.png

4 11 Test/00004.png

test_img paths = ['/content/drive/MyDrive/gtsrb-german-traffic-sign/' + path fc
test_img paths[:10]

['/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00000.png",
'/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00001.png’,
'/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00002.png’',
'/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00003.png’,
'/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00004.png’,
'/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00005.png",
'/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00006.png’,
'/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00007.png’',
'/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00008.png’',
'/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00009.png']

X_test = create_data_batches(test_img paths, test_data=True)
y _test = list(test df['ClassId'])
y_test[:10]

Creating test data batches...
[16, 1, 38, 33, 11, 38, 18, 12, 25, 35]

Making and Evaluating predictions using a trained model on test
data

predictions = model.predict(X_test, verbose=1)

198/198 [==============================] - 13705 7S/Step

Function to convert probabilities to labels
def get_pred_label(prediction_probabilities):

Turns an array of prediction probabilities into a label.

return unique_signs[np.argmax(prediction_probabilities)]

Turning probabilities to labels

pred_labels = []

for 1 in predictions:
pred_labels.append(get_pred_label(i))

pred_labels[:10]

[16, 1, 38, 33, 11, 38, 18, 12, 25, 35]
Getting the accuracy of the model on test data

acc = accuracy_score(y_test, pred_labels)
acc

0.9782264449722882

batch _size = 100
num_plot _column = 5
num_plot_row = batch_size // num_plot_column + (batch_size % num_plot_column >

plt.figure(figsize=(15,50))

plt.subplots_adjust(hspace=0.5)

for n in range(batch_size):
plt.subplot(num_plot_row,num_plot column,n+l)
plt.imshow(mpimg.imread(test_img paths[n]))
color = "green" if pred_labels[n] == test df['ClassId'][n] else "red"
plt.title(label map[pred_labels[n]].title(), color=color)
plt.axis('off")

_ = plt.suptitle("Model predictions (green: correct, red: incorrect)")

print("Accuracy of the shown eval batch: + str(accuracy_score(y_test, pred_la

Accuracy of the shown eval batch: ©.9782264449722882

Meodel predictions (green: correct, red: incerrect)

Wehicles Over 3.5 Metric Tons Prohibit&gead Limit (30Km/H) Keep Right Turn Right Ahead Right-Of-Way At The Next Intersection

. ?-—"
import seaborn as sns

[o\ VAL | [N

test labels = []

preds_labels = []

for n in range(len(y_test)):
test_labels.append(label_map[y_test[n]])
preds_labels.append(label _map[pred_labels[n]])

cm = confusion_matrix(y_test, pred_labels)

ax = plt.subplot()

sns.set(rc = {'figure.figsize':(50,50)})

axis_labels = sign_names['SignName'].to_numpy()

sns.heatmap(cm, annot=True, fmt='g', ax=ax, cmap="Y1lGnBu", xticklabels=axis 1lakt
labels, title and ticks

ax.set_xlabel('Predicted labels');ax.set_ylabel('True labels'); ax.set_title('C

Confusion Matrix

Speed limit (20km/h)

Speed limit (30km/n)

Speed limit (50K

Speed limit (60km/h)
Speed limit (70km/h)
Speed limit (80km/h)

End of speed limit (B0km/h)

Speed limit (100km/h)

600

Speed limit (120km/mn)

No passing

No passing for vehicles over 3.5 metric tons

Rightof-way at the next intersection

Priority road 5 00 0 0 0 0 0 0 0 0 0 0 0 0 0 OO0 Q0 0 0 01 0 5 0 0
Yield 0 0o 0o 0 © 0 0 0 00 0O OUOU O OOOO OO0 D0 0 2 0 1 0 0
500
Stop 0 0o 0o 0 0 0 0 0 00 0 O0OOU O OO OOOO O 0 0 0 0 0 0
Novehicles 0 0 ©0 0O O 6 6 0 0 O O O O ©O ©O 2100 0 0 0 0 0 0 0 0 0 0 0 0 0 O O 0 0 0 0 0 0 0 0 0 0 O
Vehicles over 3.5 metric tons prohibites 0 0 O 0O 0 0 0 0 0 1 0 0 0 0O O O 49 0 0O O O O O 0 0 0 0 O O O O O 0 0O 0 0 0 0 0 0 0 0 O
Noenty © O 0 0O O O O 0 0O 0 0 0 2 0 0 0 O o 0o 0o 0o o0 0 0 0 ©0 0 0 0 O OO 1 0 0 0 0 0 0 0 0 0
Generalcation 0 1 0 0 O ©0 © 0 0 0 0 1 0 0O O O 0O O 000 0 1 0 4 1 4 2 0 1 4 0 0 0 0 0 0 0 0 0 2 0 0
Dangerous curve tothelet © 0 ©0 O O ©0 © ©0 0 0 0O O O O O O O O 0O 5 0 0 0 1 0 0 0 O O O O 0O O 0O 0 0 0 0 0 0 0 0 0 w0
. Dangerous curve totherigt © 0 0 0 0 O O O O 0 0 0 0 O O 0O O O O © % 0 0 0 0 0 O 0 O O O O 0 0O 0 0 0 0 0 0 0 0 O
: eeer & 5 4 0 5 s 0 ¢ o 6 s oo a0 s ac s offlemacocacececetaeseoao
& Bumpyroad 0 O O 0O 0 0 O 0O 0 O 0O 0O 0 O O O O O 1 O O 0116 0 0 0 3 0 0 0 O 0O 0 0 0 0 0 0O 0 0 0 0 O
Sipperyroad 0 0 © ©0 O © © © ©0 0 0 ©0 0 © 0 0 0O O 0O 0O 1 0 0 149 0 0 © 0 0 0O 0 0 0 0 0 0 0 0 0 0 0 0 0
Road narrowsontherigt 0 0 0 O O © 0 0 0 0 0 1 0 0O O O O O O O O O O O & 1 1 0O 0O O O O © O O O O O O O 0 0 O
Roadwork 0 O O 0 O O 0 0 0 0 0 3 0 0 0O 0 0 0 O 0 0 0 0 0 0 0o 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 O |00
Teafficsignals 0 0 0 O O 0 O O O 0O O O O O O 1 O O 9 0 O 0O 0 O O 317 0 O O 0 0O O 0 0 0 0 0 0 0 0 0 O
Pedestrions: 0 12 0 0O O © 0 0O 0 O 0O O 0 O O O 0O O 1 O O 3 0 0 0 2 0 3 0 3 0 0O 0 0 0 0 0 0 0 0 0 0 0
Childrencrossing 0 0 0 0 0 ©0 © ©0 0 0 0 0O O O O O O O O 0 O 0O 0 O O 0O ©O O 44 6 0 0 0O 0 0 0 0 0 0 0O 0 0 0O
Bicyclescrossng 0 0 O 0 0 0 0 0 0 0O 0O 0O 0 O O O O O O O O O O 0 0 0 0 0O 0 % 0O 0O 0 0 0 0 0 0 0 0 0 0 0
Bewareoficelsow 0 1 0 0 0 O O O O 0 0 0O 1 O 0 0 O O O © 15 0 0 5 0 0O O O 1 3124 0 0 0 0 0 0 0 0 0O 0O O O
Wild animalscressmg 0 0 0 O O 0O ©0 0 O 0 0 0 0 O 0 O O O 1 O 3 0 0 0 0O 0 0O O O O 026 0 0 0 0 0 0 0 0 0 0 O - 200
End of all speed and passing imits 0 0 ©0 0 O © © 0 0 0 0 0O 0O O O O O O O O O O O O 0O O O O O O O O 6 ©0 0 0 0 0 O 0 0 0 O
Tumrightaheas © O O 0 0 0O O O O 0O 0 0 0 O O O O O O O O O O O O O O O O O O O 0 2090 0 1 0 0 0 0 0 O
Tumleftahead 0 O 0 0O O O 0 © ©0 0 0O 0 0 O 0O O O O O O 0 0 0 0 0 ©0 ©0 O O O O 0 0 0119 0 0 0 0 0 1 0 0
Aheadoy 0 0 O O 0O 0 0 O 0 0 O O 0 O O 1 0 O O O O O O 0 0 0 0 0O 0 0 O O 1 0 0 00 0o 0o 0o 0 0O
Gostraightorright 0 0 ©0 0O 0O 0 0 0 0 0 0 0 0 0 O 0O 0 0O 1 0 0 0 0 0 0 0 0 0 0 0 O O 0 0 0 0119 0 0 0 0 0 0O
-100

Gostraightorlet 0 0 0 0O 0 © 0 0 0 O 0 O 0 0 0 O O 0 O 0 0O 0 0 0 O 0 0 0O O 0O 0 O O O 0 0O 0O 6 0 0 0 0 O
Keeprig 0 0 O 0 O 0 0 0 0 0 O 0 0 0 O 0O O O O © O 0 O O 0 0 © 0O 0 O O O © 0 1 0 0 1 E 0o 0 0 o0
Kesplet 0 0 ©0 O 0O © 0 0O 0 0 O O 0O O O O O O O O O 0O O O 0 0 0 0 0 O O O © 2 0 0 0 0 0 8 0 0 O

Roundaboutmandatoy 0 0 0 O 0 © 0 0O 0 0 0 0 0 0 0O O O 0O O O 1 0 0 0O O 0 0 O O O 0O O O O 0 0O 0 1 0 0 8 0

°

Endofnopassng 0 0 ©0 0O O © 0 O 0 14 0 0 0 0O O O O 0O O O O 0O O O O 0 O O O O O O 0 0 0 0 0 0 0 0 0

&
°

°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
-

End of no passing by vehicles over 3.5 metric tons

No passing
Priority road
Yield

Stop

No vehicles

No entry
General caution
Double curve
Bumpy road
Slippery road
Road work
Traffic signals
Pedestrians
Children crossing
ycles crossing
Turn right ahead
Turn left ahead
Ahead only

Keep right.

Keep left

Speed limit (20km/n)
Speed limit (30km/n)

Speed limit (50km/n)

Speed limit (60km/n)

Speed limit (70km/n)

Speed limit (80km/h)

End of speed imit (B0km/h)
Speed limit (100km/m)

Speed limit (120km/h)

or vehicles over 3.5 metric tons:
“ofway at the next intersection
over 3.5 metric tons prohibited
Dangerous curve to the left
Dangerous curve to the right
Road narrows on the right
Beware of ce/snow

ild animals erossing

3 0f all speed and passing limits
Go straight or right

Go straight or left

Roundabout mandatory

End of no passing

by vehicles over 3.5 metric tons

v Converting to tflite model

import time
t = time.time()

export_path = "/content/drive/MyDrive/output/model{}".format(int(t))
model.save(export_path, save format='tf'")

export_path

INFO:tensorflow:Assets written to: /content/drive/MyDrive/output/modell649106813/ass
INFO:tensorflow:Assets written to: /content/drive/MyDrive/output/modell1649106813/ass

'/content/drive/MyDrive/output/modell1649106813"

OUTPUT_TFLITE_MODEL = "/content/drive/MyDrive/output/saved model.tflite"

Convert the model
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite _model = converter.convert()

Save the TF Lite model.
with tf.io.gfile.GFile(OUTPUT_TFLITE_MODEL, 'wb') as f:
f.write(tflite_model)

INFO:tensorflow:Assets written to: /tmp/tmpugvuswidb/assets
INFO:tensorflow:Assets written to: /tmp/tmpugvuswidb/assets
WARNING:absl:Buffer deduplication procedure will be skipped when flatbuffer library :

»

Testing the tflite model

OUTPUT_TFLITE_MODEL = "/content/drive/MyDrive/output/saved_model.tflite"

for image val batch, label val batch in val _data:
print("Image batch shape: ", image_val batch.shape)
print("Label batch shape: ", label val batch.shape)
break

Image batch shape: (64, 32, 32, 3)
Label batch shape: (64, 43)

Load the TFLite model and allocate tensors.
interpreter = tf.lite.Interpreter(model path=OUTPUT_TFLITE_MODEL)
interpreter.allocate_tensors()

input_details = interpreter.get_input_details()
output_details = interpreter.get output_details()

batch_size = image_val batch.shape[0]
predicted _id = np.zeros(batch size)

for i, image in enumerate(np.split(image_val batch, batch_size)):
interpreter.set_tensor(input_details[@]['index'], image)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[@]['index'])
predicted_id[i] = np.argmax(output_data)

label id = np.argmax(label val batch, axis=-1)

num_plot column =5
num_plot_row = batch_size // num_plot_column + (batch_size % num_plot_column >

plt.figure(figsize=(20,50))

plt.subplots_adjust(hspace=0.5)

for n in range(batch_size):
plt.subplot(num _plot row,num plot column,n+l)
plt.imshow(image_val batch[n])
color = "green" if predicted_id[n] == label_id[n] else "red"
plt.title(label map[predicted id[n]].title(), color=color)
plt.axis('off")

_ = plt.suptitle("Model predictions (green: correct, red: incorrect)")

print("Accuracy of the shown eval batch, with the TensorFlow Lite model:")
accuracy_score(label _id, predicted_id)

Accuracy of the shown eval batch, with the TensorFlow Lite model:
1.0

Model predictions (green: correct, red: incorrect)

Traffir Sinnals Gtan viald Nn Pacsinn Far Vehiclas Nuar 3 5 Matrir Tanc M Vshirlag

v Testing a single image

=] [o . < e,]
test _me_path = '/content/drive/MyDrive/test _inputs/5.jpg’

SPEEU LITIL LDURITH] MU Fassing T nanie s1yndis SPEEU LITIL LIURITI)

plt.imshow(mpimg.imread(test_me_path))

<matplotlib.image.AxesImage at Ox7fd445e7c410>
0

50
100
150

200

250

. 1l
o 150

50 100 200 250 300

T T
input_data = process_image(test_me_path)
e [RS T A L

input_data = tf.expand_dims(input_data, axis=0)

Speed Limit (80Km/H) Speed Limit (80Km/H) Wild Animals Crossing Speed Limit (80Km/H) Speed Limit (80Km/H)

Load the TFLite model and allocate tensors.
interpreter = tf.lite.Interpreter(model path="/content/drive/MyDrive/output/sav

interpreter.allocate_tensors()

Get input and output tensors.
input_details = interpreter.get_input_details()

output_details

Test the model on random input data.

input_shape

interpreter.invoke()

The function “get tensor() returns a copy of the tensor data.

input_details[@]['shape’]
interpreter.set_tensor(input_details[@]['index'], input_data)

interpreter.get output_details()

Use “tensor()” in order to get a pointer to the tensor.

output data

print(output_data)

—
—

N

N WNRERE RPRUTWNPRO

.44010025e-17
.93470617e-15
.38870375e-16
.73513903e-13
.16539488e-17
.27447967e-15
.82171602e-19
.38862661e-16
.01926637e-18
.78759476e-20
.69131419e-20

P OFRLPNMNNMNONMNRERERUN

.64569996e-13
.08395340e-11
.54678752e-11
.50435247e-13
.80879782e-08
.12526540e-18
.47348772e-13
.63118628e-13
.42198468e-17
.40122617e-24
.86145644e-18

P NP NMNNPPRPRPRPWOO

.75505333e-13
.52302587e-17
.07766546e-09
.00000000e+00
.89214506e-14
.64495792e-14
.02011005e-10
.05917142e-18
.76539833e-19
.07759738e-16
.66279754e-18]

unique_signs[np.argmax(output_data)]

14

label map[unique_signs[np.argmax(output_data)]]

'Stop

— VT WRk WWwWoRrMRPRDN

interpreter.get_tensor(output_details[@]['index'])

.88851711e-12
.81415804e-18
.82838161e-17
.10711557e-13
.34889936e-18
.92996055e-15
.01682902e-22
.81798597e-14
.00462527e-19
.36607605e-20

