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Abstract:  

A Copilot system is a network of several components that are used in order to conduct 

an observing system. This system monitors and notifies the user of any possible obstacle along 

the road. These obstacles include speeding limits, car accidents, and many other factors such 

as sudden increases or decreases in acceleration. The main aim of the project is to design a 

traffic copilot system that has the ability to conduct all the mentioned tasks alongside achieving 

several criteria including accuracy, high performance, low cost…etc.  
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III. INTRODUCTION 

Driving carefully and following the rules will avoid many problems, especially a car 

accident. Avoiding excessive speed is the common denominator of all causes of accidents. 

Beware the mistake of others, and that is the only safe way, which is to create a sufficient 

distance as a safety area around the car to move within its range. These days not many people 

follow this system, for this reason, we find many accidents on the streets. Because a lot of 

people have bad habits on the roads such as speeding and wrong way driving also texting while 

driving, for this reason, we try to build a copilot application for traffic safety. The copilot 

application acts as an extra pair of eyes for the driver, monitoring their location on the road, 

warning them if there are any important traffic signs, and assisting them in safely driving within 

the speed limit. The main aim of the project is to design and implement a copilot application 

for traffic safety that can help drivers significantly improve the safety of their driving. The 

motivations behind developing this solution can be summarized in the following points. 

1. Accidents  

The phenomenon of traffic accidents has spread widely nowadays; either because of 

the driver’s error, the lack of attention of pedestrians, or some defect in the roads and bridges, 

and perhaps the accident was preordainment without the presence of any human or material 

defect. The state and citizens must take into account the reasons that preserve the safety of the 

passenger and pedestrians at the same time, in order to avoid frequent accidents. 

2. Traffic congestion  

Traffic congestion has many negative effects, as this problem increases the rate of air 

pollution, which in turn affects the health of the individual and the climate, and the time that 

the driver spends stuck in the congestion and may cause some accidents. 

3. Traffic safety  

Traffic on roads is one of the most important serious problems that our contemporary 

world suffers from, and the countries of the world have noticed this problem and have put in 

place some laws to alleviate it as much as possible, but they did not reach the required level, 

as the number of people who die in the world annually is estimated to be more than million 

people, and the number of injured as a result of road accidents reaches. 

IV. DESIGN DEVELOPMENT 

In this chapter, a detailed description of the design and its different elements is given. 

1. Proposed Design 

The proposed copilot system will be able to detect the traffic labels from distance with 

high accuracy. It will also have an alarming system when a critical traffic label is observed on 

the road. Moreover, the system will have the ability to warn the driver when the speed limit is 

exceeded. The system will also detect nearby collisions and accidents and report them to the 

user in real-time. Additionally, the driver will be warned once a sudden change in acceleration 

occurs.  



 

 

2. Detailed High-Level Specifications 

 

Figure 1. The high-level design of the system 

First, we have a smartphone with GPS, camera, and Internet connection. The GPS of 

the smartphone is accessed to get information about the current location of the vehicle and the 

speed of the vehicle is calculated using GPS data. If the current speed of the vehicle changes 

abruptly, the smartphone sends an audio traffic accident alert. The smartphone is connected to 

the cloud database via the Internet, and the database holds traffic data such as locations of 

traffic jams, car accidents, etc. If the current location is within a certain radius from any of the 

traffic events recorded in the database, the smartphone sends an audio alert to warn the driver.  

Furthermore, the smartphone camera sends a live feed of the road, where the accepted 

frames are sent through a pre-trained convolution neural network that classifies and recognizes 

the traffic signs from these frames. The speed limit from the given sign is updated to alert the 

driver when the current speed exceeds the speed limit. Moreover, when a critical traffic sign is 

detected, an audio alert is sent to the driver. 

 



 

 

3. Detailed Low-Level Specifications 

a) Interacting Components 

 

Figure 2. The interacting components of the system 

i. TensorFlow 

Google Brain Team is responsible for the creation of the TensorFlow open-source software 

library machine. It is created for machine learning and artificial intelligence applications. 

TensorFlow comes with several options, but most importantly it facilitates training and 

inference of deep neural networks. It was first released in 2015, and later it was updated to 

TensorFlow 2.0 in 2019. The software can be used in several programming languages. Some 

of these languages are Java, JavaScript, C++, and Python. This project uses TensorFlow on 

Python. 

ii. TensorFlow Lite 

The framework needed to run TensorFlow for Flutter applications is TensorFlow Lite. It 

is a framework that comes with software packages used in ML training locally on the hardware. 

It is primarily used for low-size and low-computational devices as it aids developers to run 

their models through such devices. In this project, the pre-trained TensorFlow model is 

converted into the TFLite format to be then integrated into the Flutter project. 

iii. Flutter 

Flutter is an open-source framework for developing native interfaces on iOS and Android. 

This UI framework is used to build applications from a single codebase. These applications 

can be used on the web, mobile, or desktop. Flutter also uses Dart for its several features such 



 

 

as Minix, isolates, and others. Dart can use Just-In-Time compilation, which allows Flutter to 

offer hot reloads through development without having to create a new build.  

iv. Firebase 

It is a real-time database used for developing applications. It is a newly founded back-end 

service and it is found on the Google Cloud Platform. This program is the reason users can 

access their data from the cloud across several different platforms. It provides its users with 

readily available data on their iOS or Android devices. Firebase Firestore is a NoSQL document 

database. It has several uses, some of these usages are automatic scaling, high performance, 

and application development. What makes Firestore a unique database is its flexibility and its 

description of relationships between objects. It still comes with the basic options present in 

other databases. It also syncs every user’s data across several platforms. In this application, 

Firebase is integrated into the Flutter project and is used to store and retrieve the coordinates 

of accidents and traffic congestions. 

 

b) Machine Learning Model 

 

Figure 3. Detailed design of the TensorFlow model 

This model is a machine learning one used to recognize images. The model works on 

labeling the image uploaded to it in a category. The categories these images fall under are 

previously taught to the model by the user through uploading labeled similar images. A training 

dataset is used to train the ML model. The training data is a set of data used to teach the model 

how to learn and deliver advanced results using technologies such as neural networks. It can 

be supplemented with additional datasets known as validation and testing sets. Feature 

extraction is the process of building values extracted from an initial set of data to aid users in 

learning, generalization, and interpretation. It facilitates the process of getting important and 

relevant information when there is a large data set with several resources. 



 

 

Image classification is used to define the class of a certain object within an image, whilst object 

detection is used in computer vision to identify objects in images. The input of image 

classification is an image producing an output that is the label. The input of object detection is 

an image or more producing an output that is a bounding box or more and labeling of said 

boxes. Image classification’s algorithm produces a list of categories from the inputs. Object 

detection’s algorithm produces categories in the image along with its bounding box. 

 

V. PROJECT REALIZATION AND PERFORMANCE OPTIMIZATION  

1. Planned implementation and experiments. [PI-6.a] 

a) Training Dataset 

The TensorFlow model used in this project was trained on The German Traffic Sign 

Benchmark (GTSRB), which is a multi-class, single-image classification database introduced 

at the International Joint Conference on Neural Networks (IJCNN) in 2011. The database has 

the following properties: single-image, multi-class classification problem, more than 40 

classes, more than 50,000 images in total, and large, lifelike database, reliable ground-truth 

data due to semi-automatic annotation, and physical traffic sign instances are unique within the 

dataset (i.e., each real-world traffic sign only occurs once). 

The training set archive is structured as follows: one directory per class, each directory 

contains one CSV file with annotations ("GT-<ClassID>.csv") and the training images. 

Training images are grouped by tracks, and each track contains 30 images of one single 

physical traffic sign. 

The images contain one traffic sign each. Images contain a border of 10 % around the 

actual traffic sign (at least 5 pixels) to allow for edge-based approaches. Images are stored in 

PPM format (Portable Pixmap, P6), and image sizes vary between 15x15 to 250x250 pixels. 

Images are not necessarily square, and the actual traffic sign is not necessarily centered within 

the image. This is true for images that were close to the image border in the full camera image. 

The bounding box of the traffic sign is part of the annotations. 

Annotations are provided in CSV files. Fields are separated by ";” (semicolon). 

Annotations contain the following information:  

• Filename: Filename of the corresponding image 

• Width: Width of the image 

• Height: Height of the image 

• ROI.x1: X-coordinate of the top-left corner of the traffic sign bounding box 

• ROI.y1: Y-coordinate of the top-left corner of the traffic sign bounding box 

• ROI.x2: X-coordinate of the bottom-right corner of the traffic sign bounding box 

• ROI.y2: Y-coordinate of the bottom-right corner of the traffic sign bounding box 

 



 

 

The training data annotations additionally contain ClassId, which is the assigned class 

label. The distribution of the dataset classes is shown in the below figure. 

 

Figure 4. Distribution of the dataset images over classes 

  



 

 

b) TensorFlow Model 

A Convolutional Neural Network (CNN) is a machine learning unit that analyzes data 

using perceptron/computer graphs. The majority of the data is represented via photographs. A 

3D vector dimension is processed using feature maps and then downsampled using the Pooling 

method. Two prominent pooling approaches for downsampling image feature maps are 

MaxPooling and MeanPooling. The Convolution Neural Network is a popular Deep Learning 

technique. CNN's main purpose is to shrink the size of the input shape. We'll utilize four-

dimensional picture pixels in the example below, with a total of 50 photographs and 64 pixels 

of data. The 4 value 3 symbolizes a color image since a picture is made up of three colors, or 

RGB. Conv2D scales down the input size after receiving the input picture pixel. 

 

Figure 5. CNN model 

Thus, the architecture of the TensorFlow model is chosen to be the following: 

 

Figure 6. TensorFlow model architecture 



 

 

 

After cleaning the dataset and splitting it into training and validation subsets, we 

compile the TensorFlow model. Only 10 epochs are chosen to limit the chance of overfitting. 

 

Figure 7. Model training 

The accuracy and loss curves for training and validation datasets are shown in the figure 

below. 

 

Figure 8. Accuracy and loss curves 

Testing the model on the test data results in 97.82% accuracy as shown in the following figure. 

 

 



 

 



 

 

 

 
Figure 9. Model accuracy and predictions 



 

 

 The following is the confusion matrix of the trained model. As it is shown in the 

following figure, the model is performing well since the highest predicted count label in each 

class is the true label of that class. 

 

Figure 10. Confusion matrix 

  

  



 

 

c) Application 

To limit the possible confusion in the detection of traffic signs from the smartphone 

camera feed, we limited the number of classes used in the application to the following 20 labels: 

Label Sign Label Sign 

Children Crossing 

Road 

 

Speed Limit 10 

 

 

Crosswalk 

 

Speed Limit 20 

 

 

Don’t Enter 

 

 

Speed Limit 30 

 

 

No Vehicles 

 

 

Speed Limit 40 

 

 

Don’t Stop 

 

 

Speed Limit 50 

 

 

Give Road 

 

 

Speed Limit 60 

 

 

Main Road 

 

 

Speed Limit 70 

 

 

No Overtaking 

 

 

Speed Limit 80 

 

 

No Parking 

 

 

Speed Limit 90 

 

 

Stop 

 

Speed Limit 100 

 

  



 

 

Next, we recorded the warning voice notifications to be used in the application. 

 

Figure 11. Warning voice recordings 

 After coding the application in Flutter, we build and export the Android project. Then, 

we used Android Studio to design the interface of the Android application. 

 



 

 

 

 



 

 

 

Figure 12. Application UI 

 The Firebase plugins were also integrated into the application and the Android app was 

registered into the application’s project settings. 

 



 

 

 

Figure 13. Firebase integration 

 

 Finally, the app icon was chosen to be the following icon. 

 

Figure 14. App icon 

 

2. Design Analysis and Feedback [PI-6.b] 

The experiments needed to test the major functionalities of the app are as follows: 

1) Installing and launching the application  

2) Accurately calculating the speed of the moving vehicle 

3) Detecting a speed limit traffic sign with high accuracy 

4) Detecting a close traffic sign  

5) Detecting a traffic sign from afar 

6) Exceeding the speed limit warning 

7) Detecting a car accident or a collision nearby 



 

 

The tasks were distributed as follows: 

Shahad Alaradi  database and writing the app code 

Shaikha Almutairi  database and writing the app code  

Manar Fzaie  check the labels and write the app code 

Raghad Alshammari  building the TensorFlow model 

Maha Alkhars  training the model and printing the accuracy metrics  

 

3. Design Optimization and Improvements [PI-6.c] 

Upon testing the application, the application worked as predicted. The proposed copilot 

application was able to detect the traffic labels from distance with high accuracy. The alarming 

application sent a verbal notification when a critical traffic label was detected. Moreover, the 

application warns the driver when the speed limit is exceeded. However, due to the limitations 

of an existing dataset of nearby collisions and accidents, the application could not report them 

to the user in real time. The following are screenshots of the copilot application. 

The experiments were conducted during the daytime and proved to be successful, and the 

results are shown below: 

Experiment Outcome Screenshot/Details 

Installing and 

launching the 

application  

Success 

 



 

 

Calculating the 

speed of the moving 

vehicle 

Success 

 

Detecting a 100 

km/hr speed limit 

traffic sign with high 

accuracy 

Success 

 



 

 

Detecting a 60 km/hr 

speed limit traffic 

sign with high 

accuracy 

Success 

 

Detecting a stop sign Success 

 



 

 

Detecting a traffic 

sign from afar 

Success 

 

Exceeding the speed 

limit warning 

Success 

 

Detecting a car 

accident or a 

collision nearby 

Failure Due to the limitations of no 

existing dataset of nearby 

collisions and accidents, the 

application could not report 

them in real-time 

 



 

 

However, the traffic copilot app performs a computationally expensive task. As a result, 

there are several limitations: 

- Due to phone camera limitations, traffic sign identification may fail at night and in poor 

lighting situations.  

- The software is trained on German road signs. However, because the signs in many 

nations are extremely similar, the software should function there as well. Unfortunately, 

there is still little support for speed restrictions in Kuwait. 

- There is no support for city/place signs that may reduce the speed limit in accordance 

with local traffic laws. 

- Due to the camera's limited view angle, traffic signs in sharp turns are occasionally 

missed. 

- Due to the computational power needed for the traffic detection to work correctly, low-

performance phones may cause road signs to be missed or their detection would be 

false. 

 

VI. GENERAL DISCUSSION 

1. Final Cost Analysis and Discussion 

The development and building of the application did not result in extra costs due to the 

pre-existing availability of the smartphone used to test the application and the laptop used to 

code, develop, and simulate the application. The sensors and camera used are also available in 

the smartphone and hence no external camera or sensors were used in the development of this 

solution. A similar existing solution is an iOS app called Radarbot which is a GPS navigator 

that specializes in speed cameras. The combines real-time warnings with a radar detection alert 

system available offline. Radarbot is a strong program that combines radar alerts, real-time 

traffic alerts, and particular speed restriction warnings for various vehicles (cars, motorcycles, 

trucks, and commercial vehicles). However, the app costs 20 KWD to buy from the App Store 

to use all its features. Moreover, it does not detect real-time traffic signs using the phone camera 

and relies on a dataset that stores and retrieves all the info related to speed limits.  

2. Commercializing the Project and Relevance to Region (Social, Cultural 

and Political issues) 

Traffic apps have built quite a following to them over the years. This following has 

been on the increase year by year due to several benefits that have been shown not only 

individually but also on a societal scale. Traffic apps operate in a way it gives their users real-

time updates using certain variables such as geographic information, cell phone data, and 

municipal sensors to enable them to reach their destination quicker and faster. With citizens 

managing their time and their car rides, the presence of cars in the streets will be lesser causing 

lower pollution. It is sound pollution from car honking or air pollution from harmful gasses 

being transmitted from vehicles. Furthermore, the air pollution caused by traffic congestion is 

the result of the increase in carbon monoxide emitted from said vehicles, contributing to the 

increase in ozone concentration and amplification of global warming. By lessening the problem 



 

 

of mere traffic, the smaller picture, we manage a more complicated one of pollution i.e., the 

bigger picture. 

VII. PROJECT MANAGEMENT 

1. Encountered Problems and Proposed Solutions 

Some of the encountered problems during our project are listed in the below table. 

Encountered Problem Proposed Solution 

Due to phone camera limitations, traffic sign 

identification may fail at night and in poor 

lighting situations.  

Advise users to use the application during the 

daytime. Another solution that may allow the 

phone camera to have a night vision can be 

further researched and developed. 

There is no support for city/place signs that 

may reduce the speed limit in accordance 

with local traffic laws. 

Collect a new training dataset of Kuwaiti 

traffic signs and train the model using them. 

Due to the camera's limited view angle, 

traffic signs in sharp turns are occasionally 

missed. 

Develop a solution that can incorporate the 

new flagship phone camera's wide-vision 

lenses. 

Due to the computational power needed for 

the traffic detection to work correctly, low-

performance phones may cause road signs to 

be missed or their detection would be false. 

Develop the application to use a smaller/less 

complex model and to use less computational 

power so that it can run on older phones 

efficiently. 

The software is trained on German road 

signs. However, because the signs in many 

nations are extremely similar, the software 

should function there as well.  

Collect a new training dataset of Kuwaiti 

traffic signs and train the model using them. 

Due to the limitations of no existing dataset 

of nearby collisions and accidents, the 

application could not report them in real-

time 

Ask the local Traffic Authority for 

permission to access the national datasets of 

accidents and traffic jams. 

 

VIII. CONCLUSION AND FUTURE WORKS 

In conclusion, accidents are one of the most reasons behind death. Having an assisting 

system that helps and warns the driver about possible obstacles along the road might reduce 

the risks of car accidents. The project will be able to conduct a design that works as a copilot 

that notifies the driver of possible sources of risk. This design has gone through several 

engineering design steps that started with defining the problem, searching for possible 

solutions, evaluating them, and choosing one. The choosing procedure was conducted using a 

decision matrix that determined the solution based on weighted criteria based on their 

importance to decide the most suitable solution. Moreover, the design was conducted following 

several requirements and criteria. It was also designed considering several constraints. In the 

future, an accident warning system that can determine the location of the vehicle and notify the 



 

 

rescue department of the occurrence of an accident can be added and will be available to all 

people to use it. 
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X. APPENDICES 

1. TensorFlow Model (JuPyter Notebook) 

 



Importing necessary tools

import os
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import matplotlib.pyplot as mpimg

import tensorflow as tf
print("TF version: ", tf.__version__)

TF version:  2.8.0 

Getting the dataset ready

from google.colab import drive
drive.mount('/content/drive',force_remount=True)

train_df = pd.read_csv('/content/drive/MyDrive/gtsrb-german-traffic-sign/Train.
train_df.head()

train_df.describe()

train_df = train_df.drop(['Width', 'Height', 'Roi.X1', 'Roi.Y1', 'Roi.X2', 'Roi
train_df.head()

Getting images and their labels

# Load sign names file 
sign_names = pd.read_csv("/content/drive/MyDrive/gtsrb-german-traffic-sign/sign
sign_names.set_index("ClassId") 

sign_names.head(n=10) 

# Create pathnames from image Id's 
filenames = ['/content/drive/MyDrive/gtsrb-german-traffic-sign/' + fname for fn
filenames[:10] 



from google.colab import drive 
drive.mount('/content/drive') 

len(filenames) 

labels = train_df['ClassId'].to_numpy() 
labels.shape[0] 

unique_signs = np.unique(labels) 
len(unique_signs) 

def group_img_id_to_lbl(lbs_ids, lbs_names):     
    """ 
    Utility function to group images by label  
    """ 
    arr_map = [] 
    for i in range(0, lbs_ids.shape[0]): 
        label_id = lbs_ids[i] 
        label_name = lbs_names[lbs_names["ClassId"] == label_id]["SignName"].va
        arr_map.append({"img_id": i, "label_id": label_id, "label_name": label_
     
    return pd.DataFrame(arr_map) 

img_id label_id label_name

0 0 20 Dangerous curve to the right

1 1 20 Dangerous curve to the right

2 2 20 Dangerous curve to the right

3 3 20 Dangerous curve to the right

4 4 20 Dangerous curve to the right

... ... ... ...

39204 39204 42 End of no passing by vehicles over 3.5 metric ...

39205 39205 42 End of no passing by vehicles over 3.5 metric ...

39206 39206 42 End of no passing by vehicles over 3.5 metric ...

39207 39207 42 End of no passing by vehicles over 3.5 metric ...

39208 39208 42 End of no passing by vehicles over 3.5 metric ...

39209 rows × 3 columns

ids_to_signnames = group_img_id_to_lbl(labels, sign_names) 
ids_to_signnames 



labels_numpy = ids_to_signnames.to_numpy() 

count_of_each_sign = pd.pivot_table(ids_to_signnames,index=["label_id","label_n
count_of_each_sign 



img_id

label_id label_name

0 Speed limit (20km/h) 210

1 Speed limit (30km/h) 2220

2 Speed limit (50km/h) 2250

3 Speed limit (60km/h) 1410

4 Speed limit (70km/h) 1980

5 Speed limit (80km/h) 1860

6 End of speed limit (80km/h) 420

7 Speed limit (100km/h) 1440

8 Speed limit (120km/h) 1410

9 No passing 1470

10 No passing for vehicles over 3.5 metric tons 2010

11 Right-of-way at the next intersection 1320

12 Priority road 2100

13 Yield 2160

14 Stop 780

15 No vehicles 630

16 Vehicles over 3.5 metric tons prohibited 420

17 No entry 1110

18 General caution 1200

19 Dangerous curve to the left 210

20 Dangerous curve to the right 360

21 Double curve 330

22 Bumpy road 390

23 Slippery road 510

24 Road narrows on the right 270

25 Road work 1500

26 Traffic signals 600

27 Pedestrians 240

28 Children crossing 540

29 Bicycles crossing 270

30 Beware of ice/snow 450

31 Wild animals crossing 780

count_of_each_sign.plot(kind='bar', figsize=(15, 7)) 



31 Wild animals crossing 780

32 End of all speed and passing limits 240

33 Turn right ahead 689

34 Turn left ahead 420

35 Ahead only 1200

36 Go straight or right 390

37 Go straight or left 210

38 Keep right 2070

39 Keep left 300

40 Roundabout mandatory 360

41 End of no passing 240

42 End of no passing by vehicles over 3.5 metric tons 240

<matplotlib.axes._subplots.AxesSubplot at 0x7fb42ec88910>

Visualizing the dataset

labels_numpy 

array([[0, 20, 'Dangerous curve to the right'], 
       [1, 20, 'Dangerous curve to the right'], 
       [2, 20, 'Dangerous curve to the right'], 
       ..., 
       [39206, 42, 'End of no passing by vehicles over 3.5 metric tons'], 
       [39207, 42, 'End of no passing by vehicles over 3.5 metric tons'], 
       [39208, 42, 'End of no passing by vehicles over 3.5 metric tons']], 
      dtype=object)

for n in range(5): 
  plt.figure() 
  i = np.random.randint(0, high=len(filenames), dtype='int') 
  plt.imshow(mpimg.imread(filenames[i])) 
  plt.title(labels_numpy[i][2]) 
  plt.axis('off') 



italicised text## One-hot encoding

labels = tf.keras.utils.to_categorical(labels, 43) 
labels 

array([[0., 0., 0., ..., 0., 0., 0.], 
       [0., 0., 0., ..., 0., 0., 0.], 



       [0., 0., 0., ..., 0., 0., 0.], 
       ..., 
       [0., 0., 0., ..., 0., 0., 1.], 
       [0., 0., 0., ..., 0., 0., 1.], 
       [0., 0., 0., ..., 0., 0., 1.]], dtype=float32)

labels[0] 

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 
       0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 
       0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)

len(labels) 

39209

Splitting our data into train and validation sets

# Create X & y variables 
X = filenames 
y = labels 

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size = 0.2, random
len(X_train), len(y_train), len(X_val), len(y_val) 

(31367, 31367, 7842, 7842)

Indented block

Processing image into Tensors



# importing necessary tools
import datetime
import os
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Activation, Dropout, Flatten, Dense, Conv2D
from tensorflow.math import confusion_matrix
import matplotlib.image as mpimg

import tensorflow as tf
print("TF version: ", tf.__version__)

TF version:  2.8.0 

device_name = tf.test.gpu_device_name()
if "GPU" not in device_name:
    print("No")
else:
    print(device_name)

/device:GPU:0 

print(tf.test.is_gpu_available())

WARNING:tensorflow:From <ipython-input-3-ae932be897c3>:1: is_gpu_available (from tens
Instructions for updating: 
Use `tf.config.list_physical_devices('GPU')` instead. 
True 

Getting our data ready

from google.colab import drive 
drive.mount('/content/drive',force_remount=True) 

Mounted at /content/drive 

train_df = pd.read_csv('/content/drive/MyDrive/gtsrb-german-traffic-sign/Train.
train_df.head() 



Width Height Roi.X1 Roi.Y1 Roi.X2 Roi.Y2 ClassId Pa

0 27 26 5 5 22 20 20 Train/20/00020_00000_00000.p

1 28 27 5 6 23 22 20 Train/20/00020_00000_00001.p

2 29 26 6 5 24 21 20 Train/20/00020_00000_00002.p

3 28 27 5 6 23 22 20 Train/20/00020_00000_00003.p

4 28 26 5 5 23 21 20 Train/20/00020_00000_00004.p

Width Height Roi.X1 Roi.Y1 Roi.X2 Roi

count 39209.000000 39209.000000 39209.000000 39209.000000 39209.000000 39209.0000

mean 50.835880 50.328930 5.999515 5.962381 45.197302 44.7283

std 24.306933 23.115423 1.475493 1.385440 23.060157 21.9711

min 25.000000 25.000000 0.000000 5.000000 20.000000 20.0000

25% 35.000000 35.000000 5.000000 5.000000 29.000000 30.0000

50% 43.000000 43.000000 6.000000 6.000000 38.000000 38.0000

75% 58.000000 58.000000 6.000000 6.000000 53.000000 52.0000

max 243.000000 225.000000 20.000000 20.000000 223.000000 205.0000

train_df.describe() 

ClassId Path

0 20 Train/20/00020_00000_00000.png

1 20 Train/20/00020_00000_00001.png

2 20 Train/20/00020_00000_00002.png

3 20 Train/20/00020_00000_00003.png

4 20 Train/20/00020_00000_00004.png

train_df = train_df.drop(['Width', 'Height', 'Roi.X1', 'Roi.Y1', 'Roi.X2', 'Roi
train_df.head() 

Getting images and their labels

# Load sign names file 
sign_names = pd.read_csv("/content/drive/MyDrive/gtsrb-german-traffic-sign/sign
sign_names.set_index("ClassId") 

sign_names.head(n=10) 



ClassId SignName

0 0 Speed limit (20km/h)

1 1 Speed limit (30km/h)

2 2 Speed limit (50km/h)

3 3 Speed limit (60km/h)

4 4 Speed limit (70km/h)

5 5 Speed limit (80km/h)

6 6 End of speed limit (80km/h)

7 7 Speed limit (100km/h)

8 8 Speed limit (120km/h)

9 9 No passinglabel_map = sign_names['SignName'].to_dict() 

# Create pathnames from image Id's 
filenames = ['/content/drive/MyDrive/gtsrb-german-traffic-sign/' + fname for fn
filenames[:10] 

['/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00000.png', 
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00001.png', 
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00002.png', 
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00003.png', 
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00004.png', 
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00005.png', 
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00006.png', 
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00007.png', 
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00008.png', 
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00009.png']

len(filenames) 

39209

labels = train_df['ClassId'].to_numpy() 
labels.shape[0] 

39209

unique_signs = np.unique(labels) 
len(unique_signs) 

43

def group_img_id_to_lbl(lbs_ids, lbs_names):     
    """ 
    Utility function to group images by label  



    """ 
    arr_map = [] 
    for i in range(0, lbs_ids.shape[0]): 
        label_id = lbs_ids[i] 
        label_name = lbs_names[lbs_names["ClassId"] == label_id]["SignName"].va
        arr_map.append({"img_id": i, "label_id": label_id, "label_name": label_
     
    return pd.DataFrame(arr_map) 

img_id label_id label_name

0 0 20 Dangerous curve to the right

1 1 20 Dangerous curve to the right

2 2 20 Dangerous curve to the right

3 3 20 Dangerous curve to the right

4 4 20 Dangerous curve to the right

... ... ... ...

39204 39204 42 End of no passing by vehicles over 3.5 metric ...

39205 39205 42 End of no passing by vehicles over 3.5 metric ...

39206 39206 42 End of no passing by vehicles over 3.5 metric ...

39207 39207 42 End of no passing by vehicles over 3.5 metric ...

39208 39208 42 End of no passing by vehicles over 3.5 metric ...

39209 rows × 3 columns

ids_to_signnames = group_img_id_to_lbl(labels, sign_names) 
ids_to_signnames 

labels_numpy = ids_to_signnames.to_numpy() 

count_of_each_sign = pd.pivot_table(ids_to_signnames,index=["label_id","label_n
count_of_each_sign 



img_id

label_id label_name

0 Speed limit (20km/h) 210

1 Speed limit (30km/h) 2220

2 Speed limit (50km/h) 2250

3 Speed limit (60km/h) 1410

4 Speed limit (70km/h) 1980

5 Speed limit (80km/h) 1860

6 End of speed limit (80km/h) 420

7 Speed limit (100km/h) 1440

8 Speed limit (120km/h) 1410

9 No passing 1470

10 No passing for vehicles over 3.5 metric tons 2010

11 Right-of-way at the next intersection 1320

12 Priority road 2100

13 Yield 2160

14 Stop 780

15 No vehicles 630

16 Vehicles over 3.5 metric tons prohibited 420

17 No entry 1110

18 General caution 1200

19 Dangerous curve to the left 210

20 Dangerous curve to the right 360

21 Double curve 330

22 Bumpy road 390

23 Slippery road 510

24 Road narrows on the right 270

25 Road work 1500

26 Traffic signals 600

27 Pedestrians 240

28 Children crossing 540

29 Bicycles crossing 270

30 Beware of ice/snow 450

31 Wild animals crossing 780

Visualizing the dataset

labels_numpy 

array([[0, 20, 'Dangerous curve to the right'], 
       [1, 20, 'Dangerous curve to the right'], 
       [2, 20, 'Dangerous curve to the right'], 
       ..., 
       [39206, 42, 'End of no passing by vehicles over 3.5 metric tons'], 
       [39207, 42, 'End of no passing by vehicles over 3.5 metric tons'], 



31 Wild animals crossing 780

32 End of all speed and passing limits 240
       [39208, 42, 'End of no passing by vehicles over 3.5 metric tons']], 
      dtype=object)

for n in range(5): 
  plt.figure() 
  i = np.random.randint(0, high=len(filenames), dtype='int') 
  plt.imshow(mpimg.imread(filenames[i])) 
  plt.title(labels_numpy[i][2]) 
  plt.axis('off') 



One-hot encoding

# Converting the labels into one hot encoding 
labels = tf.keras.utils.to_categorical(labels, 43) 
labels[0] 

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 
       0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 
       0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)

len(labels) 

39209

Creating Validation set

# Create X & y variables 
X = filenames 
y = labels 

# Splitting our data into train and validation sets 
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size = 0.2, random
len(X_train), len(y_train), len(X_val), len(y_val) 

(31367, 31367, 7842, 7842)

Processing image and turning into Tensors

IMG_SIZE = 32 

def process_image(image_path): 
    """ 
    Takes an image file path and turns the image into a Tensor. 
    """ 
    # Read in an image file 
    image = tf.io.read_file(image_path) 
    # Turn the jpeg image into numerical Tensor with 3 colour channels (Red, Gr



    image = tf.image.decode_png(image, channels=3) 
    # Convert the colour channel values from 0-255 to 0-1 values
    image = tf.image.convert_image_dtype(image, tf.float32) 
    # Resize the image to our desired value (32, 32) 
    image = tf.image.resize(image, size=[IMG_SIZE, IMG_SIZE]) 
    return image 

Turning data into batches

# Create a simple function to return tuple 
def get_image_label (image_path, label): 
    """ 
    Takes an image file path name and the assosciated label, 
    processes the image and reutrns a typle of (image, label). 
    """ 
    image = process_image(image_path) 
    return image, label 

# Define batch size 
BATCH_SIZE = 64 

# Create a function to turn data into batches 
def create_data_batches (X, y=None, batch_size=BATCH_SIZE, valid_data=False, te
    """ 
    Creates batches of data out of image (X) and label (y) pairs. 
    Shuffles the data if it's training data but doesn't shuffle if it's validat
    a. 
    Also accepts test data as input (no labels). 
    """ 
    # If the data is a test dataset, we probably don't have have labels 
    if test_data: 
        print("Creating test data batches...") 
        data = tf.data.Dataset.from_tensor_slices((tf.constant(X))) 
        data_batch = data.map(process_image).batch(BATCH_SIZE) 
    # If the data is a valid dataset, we don't need to shuffle it 
    elif valid_data: 
        print("Creating validation dataset batches...") 
        data = tf.data.Dataset.from_tensor_slices((tf.constant(X), tf.constant(
        # Create (image, label) tuples (this also turns the iamge path into a p
        data_batch = data.map(get_image_label).batch(BATCH_SIZE)
    else: 
        print("Creating training dataset batches...") 
        # Turn filepaths and labels into Tensors 
        data = tf.data.Dataset.from_tensor_slices((tf.constant(X), tf.constant(
        # Shuffling pathnames and labels before mapping image processor functio
        data = data.shuffle(buffer_size=len(X)) 
        # Create (image, label) tuples (this also turns the iamge path into a p



        data_batch = data.map(get_image_label).batch(BATCH_SIZE)
    return data_batch 

# Creating training and validation batches 
train_data = create_data_batches(X_train, y_train) 
val_data = create_data_batches(X_val, y_val, valid_data=True) 

Creating training dataset batches... 
Creating validation dataset batches... 

# Check out the different attributes of our data batches 
train_data.element_spec, val_data.element_spec 

((TensorSpec(shape=(None, 32, 32, 3), dtype=tf.float32, name=None), 
  TensorSpec(shape=(None, 43), dtype=tf.float32, name=None)), 
 (TensorSpec(shape=(None, 32, 32, 3), dtype=tf.float32, name=None), 
  TensorSpec(shape=(None, 43), dtype=tf.float32, name=None)))

Visualizing Data Batches

# Create a function for viewing images in a data batch 
def show_25_images (images, labels): 
    """ 
    Displays a plot of 25 images and their labels from a data batch. 
    """ 
    plt.figure(figsize=(20,20)) 
    for i in range(25): 
        ax = plt.subplot(5, 5, i+1) 
        plt.imshow(images[i]) 
        plt.title(label_map[unique_signs[labels[i].argmax()]]) 
        plt.axis("off") 

# Visualizing traing batch 
train_images, train_labels = next(train_data.as_numpy_iterator()) 
show_25_images(train_images, train_labels) 



Building the model

# Setup input shape to the model 
INPUT_SHAPE = [IMG_SIZE, IMG_SIZE, 3] 

# Setup the output shape 
OUTPUT_SHAPE = len(unique_signs) 

# Creating CNN Model 
def traffic_sign_net(input_shape): 
    model = Sequential() 
    model.add(Conv2D(filters=32, kernel_size=(5, 5), activation='relu', input_s



    model.add(Conv2D(filters=32, kernel_size=(5, 5), activation='relu')) 
    model.add(MaxPool2D(pool_size=(2, 2))) 
    model.add(Dropout(rate=0.25)) 
    model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu')) 
    model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu')) 
    model.add(MaxPool2D(pool_size=(2, 2))) 
    model.add(Dropout(rate=0.25)) 
    model.add(Flatten()) 
    model.add(Dense(256, activation='relu')) 
    model.add(Dropout(rate=0.5)) 
    model.add(Dense(43, activation='softmax')) 
    return model 

# Create a function that creates model 
def create_model(input_shape=INPUT_SHAPE, output_shape=OUTPUT_SHAPE): 
    # Setup the model layers 
    model = traffic_sign_net(input_shape=input_shape) 
    # Compile the model 
    print("Compiling the model") 
    model.compile( 
      optimizer=tf.keras.optimizers.Adam(), 
      loss='categorical_crossentropy', 
      metrics=['accuracy'] 
    ) 
    return model 

model = create_model() 
model.summary() 

Compiling the model 
Model: "sequential" 
_________________________________________________________________ 
 Layer (type)                Output Shape              Param #    
================================================================= 
 conv2d (Conv2D)             (None, 28, 28, 32)        2432       
                                                                  
 conv2d_1 (Conv2D)           (None, 24, 24, 32)        25632      
                                                                  
 max_pooling2d (MaxPooling2D  (None, 12, 12, 32)       0          
 )                                                                
                                                                  
 dropout (Dropout)           (None, 12, 12, 32)        0          
                                                                  
 conv2d_2 (Conv2D)           (None, 10, 10, 64)        18496      
                                                                  
 conv2d_3 (Conv2D)           (None, 8, 8, 64)          36928      
                                                                  
 max_pooling2d_1 (MaxPooling  (None, 4, 4, 64)         0          
 2D)                                                              
                                                                  
 dropout_1 (Dropout)         (None, 4, 4, 64)          0          
                                                                  



 flatten (Flatten)           (None, 1024)              0          
                                                                  
 dense (Dense)               (None, 256)               262400     
                                                                  
 dropout_2 (Dropout)         (None, 256)               0          
                                                                  
 dense_1 (Dense)             (None, 43)                11051      
                                                                  
================================================================= 
Total params: 356,939 
Trainable params: 356,939 
Non-trainable params: 0 
_________________________________________________________________ 

Training our model

NUM_EPOCHS = 10 

# Build a fn to train and return a trained model 
def train_model(): 
    """ 
    Trains a given model and returns the trained version. 
    """ 
    # Create a model 
    model = create_model() 

    # Fit the model to the data passing it the callbacks we created 
    model.fit(x=train_data, 
        epochs=NUM_EPOCHS, 
        validation_data=val_data, 
        validation_freq=1, 
             ) 
    return model 

# Fit the model to data 
model = train_model() 

Compiling the model 
Epoch 1/10 
491/491 [==============================] - 4311s 9s/step - loss: 1.7064 - accuracy: 0
Epoch 2/10 
491/491 [==============================] - 59s 120ms/step - loss: 0.3169 - accuracy: 
Epoch 3/10 
491/491 [==============================] - 58s 117ms/step - loss: 0.1704 - accuracy: 
Epoch 4/10 
491/491 [==============================] - 60s 121ms/step - loss: 0.1281 - accuracy: 
Epoch 5/10 
491/491 [==============================] - 60s 122ms/step - loss: 0.1116 - accuracy: 
Epoch 6/10 
491/491 [==============================] - 59s 120ms/step - loss: 0.0857 - accuracy: 
Epoch 7/10 



491/491 [==============================] - 60s 122ms/step - loss: 0.0738 - accuracy: 
Epoch 8/10 
491/491 [==============================] - 60s 122ms/step - loss: 0.0655 - accuracy: 
Epoch 9/10 
491/491 [==============================] - 59s 120ms/step - loss: 0.0594 - accuracy: 
Epoch 10/10 
491/491 [==============================] - 59s 120ms/step - loss: 0.0554 - accuracy: 

# Save the entire model as a SavedModel. 
!mkdir -p saved_model 
model.save('/drive/MyDrive/saved_model/my_model') 
new_model = tf.keras.models.load_model('/drive/MyDrive/saved_model/my_model') 

# Check its architecture 
new_model.summary() 

INFO:tensorflow:Assets written to: /drive/MyDrive/saved_model/my_model/assets 
Model: "sequential_2" 
_________________________________________________________________ 
 Layer (type)                Output Shape              Param #    
================================================================= 
 conv2d_8 (Conv2D)           (None, 28, 28, 32)        2432       
                                                                  
 conv2d_9 (Conv2D)           (None, 24, 24, 32)        25632      
                                                                  
 max_pooling2d_4 (MaxPooling  (None, 12, 12, 32)       0          
 2D)                                                              
                                                                  
 dropout_6 (Dropout)         (None, 12, 12, 32)        0          
                                                                  
 conv2d_10 (Conv2D)          (None, 10, 10, 64)        18496      
                                                                  
 conv2d_11 (Conv2D)          (None, 8, 8, 64)          36928      
                                                                  
 max_pooling2d_5 (MaxPooling  (None, 4, 4, 64)         0          
 2D)                                                              
                                                                  
 dropout_7 (Dropout)         (None, 4, 4, 64)          0          
                                                                  
 flatten_2 (Flatten)         (None, 1024)              0          
                                                                  
 dense_4 (Dense)             (None, 256)               262400     
                                                                  
 dropout_8 (Dropout)         (None, 256)               0          
                                                                  
 dense_5 (Dense)             (None, 43)                11051      
                                                                  
================================================================= 
Total params: 356,939 
Trainable params: 356,939 
Non-trainable params: 0 
_________________________________________________________________ 

accuracy = model.history.history['accuracy'] 
loss = model.history.history['loss'] 



validation_loss = model.history.history['val_loss'] 
validation_accuracy = model.history.history['val_accuracy'] 

plt.figure(figsize=(15, 7)) 
plt.subplot(2, 2, 1) 
plt.plot(range(NUM_EPOCHS), accuracy, label='Training Accuracy')
plt.plot(range(NUM_EPOCHS), validation_accuracy, label='Validation Accuracy') 
plt.legend(loc='upper left') 
plt.title('Accuracy : Training Vs Validation ') 

plt.subplot(2, 2, 2) 
plt.plot(range(NUM_EPOCHS), loss, label='Training Loss') 
plt.plot(range(NUM_EPOCHS), validation_loss, label='Validation Loss') 
plt.title('Loss : Training Vs Validation ') 
plt.legend(loc='upper right') 
plt.show() 

Creating test dataset batches

ClassId Path

0 16 Test/00000.png

1 1 Test/00001.png

2 38 Test/00002.png

3 33 Test/00003.png

4 11 Test/00004.png

test_df = pd.read_csv('/content/drive/MyDrive/gtsrb-german-traffic-sign/Test.cs
test_df = test_df.drop(['Width', 'Height', 'Roi.X1', 'Roi.Y1', 'Roi.X2', 'Roi.Y
test_df.head() 



test_img_paths = ['/content/drive/MyDrive/gtsrb-german-traffic-sign/' + path fo
test_img_paths[:10] 

['/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00000.png', 
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00001.png', 
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00002.png', 
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00003.png', 
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00004.png', 
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00005.png', 
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00006.png', 
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00007.png', 
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00008.png', 
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00009.png']

X_test = create_data_batches(test_img_paths, test_data=True) 
y_test = list(test_df['ClassId']) 
y_test[:10] 

Creating test data batches... 
[16, 1, 38, 33, 11, 38, 18, 12, 25, 35]

Making and Evaluating predictions using a trained model on test
data

predictions = model.predict(X_test, verbose=1) 

198/198 [==============================] - 1370s 7s/step 

# Function to convert probabilities to labels 
def get_pred_label(prediction_probabilities): 
    """ 
    Turns an array of prediction probabilities into a label. 
    """ 
    return unique_signs[np.argmax(prediction_probabilities)] 

# Turning probabilities to labels 
pred_labels = [] 
for i in predictions: 
    pred_labels.append(get_pred_label(i)) 
pred_labels[:10] 

[16, 1, 38, 33, 11, 38, 18, 12, 25, 35]

# Getting the accuracy of the model on test data 
acc = accuracy_score(y_test, pred_labels) 
acc 



0.9782264449722882

batch_size = 100 
num_plot_column = 5 
num_plot_row = batch_size // num_plot_column + (batch_size % num_plot_column > 

plt.figure(figsize=(15,50)) 
plt.subplots_adjust(hspace=0.5) 
for n in range(batch_size): 
  plt.subplot(num_plot_row,num_plot_column,n+1) 
  plt.imshow(mpimg.imread(test_img_paths[n])) 
  color = "green" if pred_labels[n] == test_df['ClassId'][n] else "red" 
  plt.title(label_map[pred_labels[n]].title(), color=color) 
  plt.axis('off') 
_ = plt.suptitle("Model predictions (green: correct, red: incorrect)") 

print("Accuracy of the shown eval batch: " + str(accuracy_score(y_test, pred_la



Accuracy of the shown eval batch: 0.9782264449722882 

import seaborn as sns 

test_labels = [] 
preds_labels = [] 
for n in range(len(y_test)): 
    test_labels.append(label_map[y_test[n]]) 
    preds_labels.append(label_map[pred_labels[n]]) 

cm = confusion_matrix(y_test, pred_labels) 
ax = plt.subplot() 
sns.set(rc = {'figure.figsize':(50,50)}) 
axis_labels = sign_names['SignName'].to_numpy() 
sns.heatmap(cm, annot=True, fmt='g', ax=ax, cmap="YlGnBu", xticklabels=axis_lab
# labels, title and ticks 
ax.set_xlabel('Predicted labels');ax.set_ylabel('True labels'); ax.set_title('C



Converting to t�ite model

INFO:tensorflow:Assets written to: /content/drive/MyDrive/output/model1649106813/asse
INFO:tensorflow:Assets written to: /content/drive/MyDrive/output/model1649106813/asse
/content/drive/MyDrive/output/model1649106813' '

import time 
t = time.time() 

export_path = "/content/drive/MyDrive/output/model{}".format(int(t)) 
model.save(export_path, save_format='tf') 

export_path 

OUTPUT_TFLITE_MODEL = "/content/drive/MyDrive/output/saved_model.tflite" 



# Convert the model 
converter = tf.lite.TFLiteConverter.from_keras_model(model) 
tflite_model = converter.convert() 

# Save the TF Lite model. 
with tf.io.gfile.GFile(OUTPUT_TFLITE_MODEL,'wb') as f: 
  f.write(tflite_model) 

INFO:tensorflow:Assets written to: /tmp/tmpuqvusw4b/assets 
INFO:tensorflow:Assets written to: /tmp/tmpuqvusw4b/assets 
WARNING:absl:Buffer deduplication procedure will be skipped when flatbuffer library i

Testing the t�ite model

OUTPUT_TFLITE_MODEL = "/content/drive/MyDrive/output/saved_model.tflite" 

for image_val_batch, label_val_batch in val_data: 
  print("Image batch shape: ", image_val_batch.shape) 
  print("Label batch shape: ", label_val_batch.shape) 
  break 

Image batch shape:  (64, 32, 32, 3) 
Label batch shape:  (64, 43) 

# Load the TFLite model and allocate tensors. 
interpreter = tf.lite.Interpreter(model_path=OUTPUT_TFLITE_MODEL) 
interpreter.allocate_tensors() 

input_details = interpreter.get_input_details() 
output_details = interpreter.get_output_details() 

batch_size = image_val_batch.shape[0] 
predicted_id = np.zeros(batch_size) 
  
for i, image in enumerate(np.split(image_val_batch, batch_size)): 
  interpreter.set_tensor(input_details[0]['index'], image) 
  interpreter.invoke() 
  output_data = interpreter.get_tensor(output_details[0]['index']) 
  predicted_id[i] = np.argmax(output_data) 

label_id = np.argmax(label_val_batch, axis=-1) 

num_plot_column = 5 
num_plot_row = batch_size // num_plot_column + (batch_size % num_plot_column > 

plt.figure(figsize=(20,50)) 



plt.subplots_adjust(hspace=0.5) 
for n in range(batch_size): 
  plt.subplot(num_plot_row,num_plot_column,n+1) 
  plt.imshow(image_val_batch[n]) 
  color = "green" if predicted_id[n] == label_id[n] else "red" 
  plt.title(label_map[predicted_id[n]].title(), color=color) 
  plt.axis('off') 
_ = plt.suptitle("Model predictions (green: correct, red: incorrect)") 

print("Accuracy of the shown eval batch, with the TensorFlow Lite model:") 
accuracy_score(label_id, predicted_id) 



Accuracy of the shown eval batch, with the TensorFlow Lite model: 
1.0

Testing a single image

test_me_path = '/content/drive/MyDrive/test_inputs/5.jpg' 

<matplotlib.image.AxesImage at 0x7fd445e7c410>

plt.imshow(mpimg.imread(test_me_path)) 

input_data = process_image(test_me_path) 

input_data = tf.expand_dims(input_data, axis=0) 

# Load the TFLite model and allocate tensors. 
interpreter = tf.lite.Interpreter(model_path="/content/drive/MyDrive/output/sav
interpreter.allocate_tensors() 

# Get input and output tensors. 
input_details = interpreter.get_input_details() 



output_details = interpreter.get_output_details() 

# Test the model on random input data. 
input_shape = input_details[0]['shape'] 
interpreter.set_tensor(input_details[0]['index'], input_data) 

interpreter.invoke() 

# The function `get_tensor()` returns a copy of the tensor data.
# Use `tensor()` in order to get a pointer to the tensor. 
output_data = interpreter.get_tensor(output_details[0]['index'])
print(output_data) 

[[2.44010025e-17 2.64569996e-13 6.75505333e-13 4.88851711e-12 
  6.93470617e-15 5.08395340e-11 6.52302587e-17 1.81415804e-18 
  4.38870375e-16 1.54678752e-11 3.07766546e-09 4.82838161e-17 
  7.73513903e-13 1.50435247e-13 1.00000000e+00 1.10711557e-13 
  3.16539488e-17 2.80879782e-08 1.89214506e-14 8.34889936e-18 
  5.27447967e-15 6.12526540e-18 4.64495792e-14 3.92996055e-15 
  1.82171602e-19 2.47348772e-13 7.02011005e-10 3.01682902e-22 
  1.38862661e-16 2.63118628e-13 2.05917142e-18 1.81798597e-14 
  2.01926637e-18 1.42198468e-17 1.76539833e-19 3.00462527e-19 
  3.78759476e-20 9.40122617e-24 2.07759738e-16 5.36607605e-20 
  2.69131419e-20 1.86145644e-18 1.66279754e-18]] 

unique_signs[np.argmax(output_data)] 
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Stop' '

label_map[unique_signs[np.argmax(output_data)]] 


