

College of Engineering and Technology

B.Sc. Computer Engineering

Final Report

Copilot Application for Traffic Safety

Abstract:

A Copilot system is a network of several components that are used in order to conduct

an observing system. This system monitors and notifies the user of any possible obstacle along

the road. These obstacles include speeding limits, car accidents, and many other factors such

as sudden increases or decreases in acceleration. The main aim of the project is to design a

traffic copilot system that has the ability to conduct all the mentioned tasks alongside achieving

several criteria including accuracy, high performance, low cost…etc.

I. TABLE OF CONTENTS

I. Table of Contents ... 3

II. Table of Figueres ... 4

III. Introduction .. 5

1. Accidents.. 5

2. Traffic congestion .. 5

3. Traffic safety .. 5

IV. Design Development .. 5

1. Proposed Design .. 5

2. Detailed High-Level Specifications ... 6

3. Detailed Low-Level Specifications.. 7

a) Interacting Components ... 7

b) Machine Learning Model ... 8

V. Project Realization and Performance Optimization ... 9

1. Planned implementation and experiments. [PI-6.a] ... 9

a) Training Dataset ... 9

b) TensorFlow Model ... 11

c) Application ... 16

2. Design Analysis and Feedback [PI-6.b]... 20

3. Design Optimization and Improvements [PI-6.c] .. 21

VI. General Discussion .. 25

1. Final Cost Analysis and Discussion ... 25

2. Commercializing the Project and Relevance to Region (Social, Cultural and Political

issues) ... 25

VII. Project Management .. 26

1. Encountered Problems and Proposed Solutions .. 26

VIII. Conclusion and Future works .. 26

IX. References .. 27

X. Appendices ... 27

1. TensorFlow Model (JuPyter Notebook) .. 27

II. TABLE OF FIGUERES

Figure 1. The high-level design of the system ... 6

Figure 2. The interacting components of the system ... 7

Figure 3. Detailed design of the TensorFlow model.. 8

Figure 4. Distribution of the dataset images over classes .. 10

Figure 5. CNN model ... 11

Figure 6. TensorFlow model architecture .. 11

Figure 7. Model training .. 12

Figure 8. Accuracy and loss curves ... 12

Figure 9. Model accuracy and predictions ... 14

Figure 10. Confusion matrix .. 15

Figure 11. Warning voice recordings ... 17

Figure 12. Application UI .. 19

Figure 13. Firebase integration .. 20

Figure 14. App icon ... 20

III. INTRODUCTION

Driving carefully and following the rules will avoid many problems, especially a car

accident. Avoiding excessive speed is the common denominator of all causes of accidents.

Beware the mistake of others, and that is the only safe way, which is to create a sufficient

distance as a safety area around the car to move within its range. These days not many people

follow this system, for this reason, we find many accidents on the streets. Because a lot of

people have bad habits on the roads such as speeding and wrong way driving also texting while

driving, for this reason, we try to build a copilot application for traffic safety. The copilot

application acts as an extra pair of eyes for the driver, monitoring their location on the road,

warning them if there are any important traffic signs, and assisting them in safely driving within

the speed limit. The main aim of the project is to design and implement a copilot application

for traffic safety that can help drivers significantly improve the safety of their driving. The

motivations behind developing this solution can be summarized in the following points.

1. Accidents

The phenomenon of traffic accidents has spread widely nowadays; either because of

the driver’s error, the lack of attention of pedestrians, or some defect in the roads and bridges,

and perhaps the accident was preordainment without the presence of any human or material

defect. The state and citizens must take into account the reasons that preserve the safety of the

passenger and pedestrians at the same time, in order to avoid frequent accidents.

2. Traffic congestion

Traffic congestion has many negative effects, as this problem increases the rate of air

pollution, which in turn affects the health of the individual and the climate, and the time that

the driver spends stuck in the congestion and may cause some accidents.

3. Traffic safety

Traffic on roads is one of the most important serious problems that our contemporary

world suffers from, and the countries of the world have noticed this problem and have put in

place some laws to alleviate it as much as possible, but they did not reach the required level,

as the number of people who die in the world annually is estimated to be more than million

people, and the number of injured as a result of road accidents reaches.

IV. DESIGN DEVELOPMENT

In this chapter, a detailed description of the design and its different elements is given.

1. Proposed Design

The proposed copilot system will be able to detect the traffic labels from distance with

high accuracy. It will also have an alarming system when a critical traffic label is observed on

the road. Moreover, the system will have the ability to warn the driver when the speed limit is

exceeded. The system will also detect nearby collisions and accidents and report them to the

user in real-time. Additionally, the driver will be warned once a sudden change in acceleration

occurs.

2. Detailed High-Level Specifications

Figure 1. The high-level design of the system

First, we have a smartphone with GPS, camera, and Internet connection. The GPS of

the smartphone is accessed to get information about the current location of the vehicle and the

speed of the vehicle is calculated using GPS data. If the current speed of the vehicle changes

abruptly, the smartphone sends an audio traffic accident alert. The smartphone is connected to

the cloud database via the Internet, and the database holds traffic data such as locations of

traffic jams, car accidents, etc. If the current location is within a certain radius from any of the

traffic events recorded in the database, the smartphone sends an audio alert to warn the driver.

Furthermore, the smartphone camera sends a live feed of the road, where the accepted

frames are sent through a pre-trained convolution neural network that classifies and recognizes

the traffic signs from these frames. The speed limit from the given sign is updated to alert the

driver when the current speed exceeds the speed limit. Moreover, when a critical traffic sign is

detected, an audio alert is sent to the driver.

3. Detailed Low-Level Specifications

a) Interacting Components

Figure 2. The interacting components of the system

i. TensorFlow

Google Brain Team is responsible for the creation of the TensorFlow open-source software

library machine. It is created for machine learning and artificial intelligence applications.

TensorFlow comes with several options, but most importantly it facilitates training and

inference of deep neural networks. It was first released in 2015, and later it was updated to

TensorFlow 2.0 in 2019. The software can be used in several programming languages. Some

of these languages are Java, JavaScript, C++, and Python. This project uses TensorFlow on

Python.

ii. TensorFlow Lite

The framework needed to run TensorFlow for Flutter applications is TensorFlow Lite. It

is a framework that comes with software packages used in ML training locally on the hardware.

It is primarily used for low-size and low-computational devices as it aids developers to run

their models through such devices. In this project, the pre-trained TensorFlow model is

converted into the TFLite format to be then integrated into the Flutter project.

iii. Flutter

Flutter is an open-source framework for developing native interfaces on iOS and Android.

This UI framework is used to build applications from a single codebase. These applications

can be used on the web, mobile, or desktop. Flutter also uses Dart for its several features such

as Minix, isolates, and others. Dart can use Just-In-Time compilation, which allows Flutter to

offer hot reloads through development without having to create a new build.

iv. Firebase

It is a real-time database used for developing applications. It is a newly founded back-end

service and it is found on the Google Cloud Platform. This program is the reason users can

access their data from the cloud across several different platforms. It provides its users with

readily available data on their iOS or Android devices. Firebase Firestore is a NoSQL document

database. It has several uses, some of these usages are automatic scaling, high performance,

and application development. What makes Firestore a unique database is its flexibility and its

description of relationships between objects. It still comes with the basic options present in

other databases. It also syncs every user’s data across several platforms. In this application,

Firebase is integrated into the Flutter project and is used to store and retrieve the coordinates

of accidents and traffic congestions.

b) Machine Learning Model

Figure 3. Detailed design of the TensorFlow model

This model is a machine learning one used to recognize images. The model works on

labeling the image uploaded to it in a category. The categories these images fall under are

previously taught to the model by the user through uploading labeled similar images. A training

dataset is used to train the ML model. The training data is a set of data used to teach the model

how to learn and deliver advanced results using technologies such as neural networks. It can

be supplemented with additional datasets known as validation and testing sets. Feature

extraction is the process of building values extracted from an initial set of data to aid users in

learning, generalization, and interpretation. It facilitates the process of getting important and

relevant information when there is a large data set with several resources.

Image classification is used to define the class of a certain object within an image, whilst object

detection is used in computer vision to identify objects in images. The input of image

classification is an image producing an output that is the label. The input of object detection is

an image or more producing an output that is a bounding box or more and labeling of said

boxes. Image classification’s algorithm produces a list of categories from the inputs. Object

detection’s algorithm produces categories in the image along with its bounding box.

V. PROJECT REALIZATION AND PERFORMANCE OPTIMIZATION

1. Planned implementation and experiments. [PI-6.a]

a) Training Dataset

The TensorFlow model used in this project was trained on The German Traffic Sign

Benchmark (GTSRB), which is a multi-class, single-image classification database introduced

at the International Joint Conference on Neural Networks (IJCNN) in 2011. The database has

the following properties: single-image, multi-class classification problem, more than 40

classes, more than 50,000 images in total, and large, lifelike database, reliable ground-truth

data due to semi-automatic annotation, and physical traffic sign instances are unique within the

dataset (i.e., each real-world traffic sign only occurs once).

The training set archive is structured as follows: one directory per class, each directory

contains one CSV file with annotations ("GT-<ClassID>.csv") and the training images.

Training images are grouped by tracks, and each track contains 30 images of one single

physical traffic sign.

The images contain one traffic sign each. Images contain a border of 10 % around the

actual traffic sign (at least 5 pixels) to allow for edge-based approaches. Images are stored in

PPM format (Portable Pixmap, P6), and image sizes vary between 15x15 to 250x250 pixels.

Images are not necessarily square, and the actual traffic sign is not necessarily centered within

the image. This is true for images that were close to the image border in the full camera image.

The bounding box of the traffic sign is part of the annotations.

Annotations are provided in CSV files. Fields are separated by ";” (semicolon).

Annotations contain the following information:

• Filename: Filename of the corresponding image

• Width: Width of the image

• Height: Height of the image

• ROI.x1: X-coordinate of the top-left corner of the traffic sign bounding box

• ROI.y1: Y-coordinate of the top-left corner of the traffic sign bounding box

• ROI.x2: X-coordinate of the bottom-right corner of the traffic sign bounding box

• ROI.y2: Y-coordinate of the bottom-right corner of the traffic sign bounding box

The training data annotations additionally contain ClassId, which is the assigned class

label. The distribution of the dataset classes is shown in the below figure.

Figure 4. Distribution of the dataset images over classes

b) TensorFlow Model

A Convolutional Neural Network (CNN) is a machine learning unit that analyzes data

using perceptron/computer graphs. The majority of the data is represented via photographs. A

3D vector dimension is processed using feature maps and then downsampled using the Pooling

method. Two prominent pooling approaches for downsampling image feature maps are

MaxPooling and MeanPooling. The Convolution Neural Network is a popular Deep Learning

technique. CNN's main purpose is to shrink the size of the input shape. We'll utilize four-

dimensional picture pixels in the example below, with a total of 50 photographs and 64 pixels

of data. The 4 value 3 symbolizes a color image since a picture is made up of three colors, or

RGB. Conv2D scales down the input size after receiving the input picture pixel.

Figure 5. CNN model

Thus, the architecture of the TensorFlow model is chosen to be the following:

Figure 6. TensorFlow model architecture

After cleaning the dataset and splitting it into training and validation subsets, we

compile the TensorFlow model. Only 10 epochs are chosen to limit the chance of overfitting.

Figure 7. Model training

The accuracy and loss curves for training and validation datasets are shown in the figure

below.

Figure 8. Accuracy and loss curves

Testing the model on the test data results in 97.82% accuracy as shown in the following figure.

Figure 9. Model accuracy and predictions

 The following is the confusion matrix of the trained model. As it is shown in the

following figure, the model is performing well since the highest predicted count label in each

class is the true label of that class.

Figure 10. Confusion matrix

c) Application

To limit the possible confusion in the detection of traffic signs from the smartphone

camera feed, we limited the number of classes used in the application to the following 20 labels:

Label Sign Label Sign

Children Crossing

Road

Speed Limit 10

Crosswalk

Speed Limit 20

Don’t Enter

Speed Limit 30

No Vehicles

Speed Limit 40

Don’t Stop

Speed Limit 50

Give Road

Speed Limit 60

Main Road

Speed Limit 70

No Overtaking

Speed Limit 80

No Parking

Speed Limit 90

Stop

Speed Limit 100

Next, we recorded the warning voice notifications to be used in the application.

Figure 11. Warning voice recordings

 After coding the application in Flutter, we build and export the Android project. Then,

we used Android Studio to design the interface of the Android application.

Figure 12. Application UI

 The Firebase plugins were also integrated into the application and the Android app was

registered into the application’s project settings.

Figure 13. Firebase integration

 Finally, the app icon was chosen to be the following icon.

Figure 14. App icon

2. Design Analysis and Feedback [PI-6.b]

The experiments needed to test the major functionalities of the app are as follows:

1) Installing and launching the application

2) Accurately calculating the speed of the moving vehicle

3) Detecting a speed limit traffic sign with high accuracy

4) Detecting a close traffic sign

5) Detecting a traffic sign from afar

6) Exceeding the speed limit warning

7) Detecting a car accident or a collision nearby

The tasks were distributed as follows:

Shahad Alaradi database and writing the app code

Shaikha Almutairi database and writing the app code

Manar Fzaie check the labels and write the app code

Raghad Alshammari building the TensorFlow model

Maha Alkhars training the model and printing the accuracy metrics

3. Design Optimization and Improvements [PI-6.c]

Upon testing the application, the application worked as predicted. The proposed copilot

application was able to detect the traffic labels from distance with high accuracy. The alarming

application sent a verbal notification when a critical traffic label was detected. Moreover, the

application warns the driver when the speed limit is exceeded. However, due to the limitations

of an existing dataset of nearby collisions and accidents, the application could not report them

to the user in real time. The following are screenshots of the copilot application.

The experiments were conducted during the daytime and proved to be successful, and the

results are shown below:

Experiment Outcome Screenshot/Details

Installing and

launching the

application

Success

Calculating the

speed of the moving

vehicle

Success

Detecting a 100

km/hr speed limit

traffic sign with high

accuracy

Success

Detecting a 60 km/hr

speed limit traffic

sign with high

accuracy

Success

Detecting a stop sign Success

Detecting a traffic

sign from afar

Success

Exceeding the speed

limit warning

Success

Detecting a car

accident or a

collision nearby

Failure Due to the limitations of no

existing dataset of nearby

collisions and accidents, the

application could not report

them in real-time

However, the traffic copilot app performs a computationally expensive task. As a result,

there are several limitations:

- Due to phone camera limitations, traffic sign identification may fail at night and in poor

lighting situations.

- The software is trained on German road signs. However, because the signs in many

nations are extremely similar, the software should function there as well. Unfortunately,

there is still little support for speed restrictions in Kuwait.

- There is no support for city/place signs that may reduce the speed limit in accordance

with local traffic laws.

- Due to the camera's limited view angle, traffic signs in sharp turns are occasionally

missed.

- Due to the computational power needed for the traffic detection to work correctly, low-

performance phones may cause road signs to be missed or their detection would be

false.

VI. GENERAL DISCUSSION

1. Final Cost Analysis and Discussion

The development and building of the application did not result in extra costs due to the

pre-existing availability of the smartphone used to test the application and the laptop used to

code, develop, and simulate the application. The sensors and camera used are also available in

the smartphone and hence no external camera or sensors were used in the development of this

solution. A similar existing solution is an iOS app called Radarbot which is a GPS navigator

that specializes in speed cameras. The combines real-time warnings with a radar detection alert

system available offline. Radarbot is a strong program that combines radar alerts, real-time

traffic alerts, and particular speed restriction warnings for various vehicles (cars, motorcycles,

trucks, and commercial vehicles). However, the app costs 20 KWD to buy from the App Store

to use all its features. Moreover, it does not detect real-time traffic signs using the phone camera

and relies on a dataset that stores and retrieves all the info related to speed limits.

2. Commercializing the Project and Relevance to Region (Social, Cultural

and Political issues)

Traffic apps have built quite a following to them over the years. This following has

been on the increase year by year due to several benefits that have been shown not only

individually but also on a societal scale. Traffic apps operate in a way it gives their users real-

time updates using certain variables such as geographic information, cell phone data, and

municipal sensors to enable them to reach their destination quicker and faster. With citizens

managing their time and their car rides, the presence of cars in the streets will be lesser causing

lower pollution. It is sound pollution from car honking or air pollution from harmful gasses

being transmitted from vehicles. Furthermore, the air pollution caused by traffic congestion is

the result of the increase in carbon monoxide emitted from said vehicles, contributing to the

increase in ozone concentration and amplification of global warming. By lessening the problem

of mere traffic, the smaller picture, we manage a more complicated one of pollution i.e., the

bigger picture.

VII. PROJECT MANAGEMENT

1. Encountered Problems and Proposed Solutions

Some of the encountered problems during our project are listed in the below table.

Encountered Problem Proposed Solution

Due to phone camera limitations, traffic sign

identification may fail at night and in poor

lighting situations.

Advise users to use the application during the

daytime. Another solution that may allow the

phone camera to have a night vision can be

further researched and developed.

There is no support for city/place signs that

may reduce the speed limit in accordance

with local traffic laws.

Collect a new training dataset of Kuwaiti

traffic signs and train the model using them.

Due to the camera's limited view angle,

traffic signs in sharp turns are occasionally

missed.

Develop a solution that can incorporate the

new flagship phone camera's wide-vision

lenses.

Due to the computational power needed for

the traffic detection to work correctly, low-

performance phones may cause road signs to

be missed or their detection would be false.

Develop the application to use a smaller/less

complex model and to use less computational

power so that it can run on older phones

efficiently.

The software is trained on German road

signs. However, because the signs in many

nations are extremely similar, the software

should function there as well.

Collect a new training dataset of Kuwaiti

traffic signs and train the model using them.

Due to the limitations of no existing dataset

of nearby collisions and accidents, the

application could not report them in real-

time

Ask the local Traffic Authority for

permission to access the national datasets of

accidents and traffic jams.

VIII. CONCLUSION AND FUTURE WORKS

In conclusion, accidents are one of the most reasons behind death. Having an assisting

system that helps and warns the driver about possible obstacles along the road might reduce

the risks of car accidents. The project will be able to conduct a design that works as a copilot

that notifies the driver of possible sources of risk. This design has gone through several

engineering design steps that started with defining the problem, searching for possible

solutions, evaluating them, and choosing one. The choosing procedure was conducted using a

decision matrix that determined the solution based on weighted criteria based on their

importance to decide the most suitable solution. Moreover, the design was conducted following

several requirements and criteria. It was also designed considering several constraints. In the

future, an accident warning system that can determine the location of the vehicle and notify the

rescue department of the occurrence of an accident can be added and will be available to all

people to use it.

IX. REFERENCES

Fernandes, B. (2015). Mobile Application for Automatic Accident Detection and multimodal

alert. IEEE, 1-5.

Godsmark, P. (2014). Autonomous Vehicles: Are we ready? Focus on the future.

KIM, J., Kim, K., Yoon, D., Koo, Y., & Han, W. (2016). Fusion of Driver-information Based

Driver Status Recognition for Co-pilot System. IV, 19-22.

Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., & Kammel, S. (2011). Towards

Fully Autonomous Driving: Systems and Algorithms. IV, 5-9.

Michalke, T., & Kastner, R. (2011). The Attentive Co-Pilot. IEEE, 1-18.

Noh, S. (2015). Co-pilot Agent for Vehicle Cooperative and Autonomous Driving. ETRI

Journal, 1-12.

Noh, S., An, K., & Han, W. (2015). Situation Assessment and Behavior Decision for

Vehicle/Driver Cooperative Driving in Highway Environments. IEEE, 1-8.

Rayle, Shaheen, S., Chan, N., Dai, D., & Cervero, R. (2014). App-Based, On-Demand Ride

Services. UCTC.

Thrun, S., Laugier, C., & Yoder, D. (2012). Autonomous Driving. handbook of intell, 12171-

1310.

Urmson, C. (2008). Autonomous driving in urban environments. Field Robot, 425-466.

X. APPENDICES

1. TensorFlow Model (JuPyter Notebook)

Importing necessary tools

import os
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import matplotlib.pyplot as mpimg

import tensorflow as tf
print("TF version: ", tf.__version__)

TF version: 2.8.0

Getting the dataset ready

from google.colab import drive
drive.mount('/content/drive',force_remount=True)

train_df = pd.read_csv('/content/drive/MyDrive/gtsrb-german-traffic-sign/Train.
train_df.head()

train_df.describe()

train_df = train_df.drop(['Width', 'Height', 'Roi.X1', 'Roi.Y1', 'Roi.X2', 'Roi
train_df.head()

Getting images and their labels

Load sign names file
sign_names = pd.read_csv("/content/drive/MyDrive/gtsrb-german-traffic-sign/sign
sign_names.set_index("ClassId")

sign_names.head(n=10)

Create pathnames from image Id's
filenames = ['/content/drive/MyDrive/gtsrb-german-traffic-sign/' + fname for fn
filenames[:10]

from google.colab import drive
drive.mount('/content/drive')

len(filenames)

labels = train_df['ClassId'].to_numpy()
labels.shape[0]

unique_signs = np.unique(labels)
len(unique_signs)

def group_img_id_to_lbl(lbs_ids, lbs_names):
 """
 Utility function to group images by label
 """
 arr_map = []
 for i in range(0, lbs_ids.shape[0]):
 label_id = lbs_ids[i]
 label_name = lbs_names[lbs_names["ClassId"] == label_id]["SignName"].va
 arr_map.append({"img_id": i, "label_id": label_id, "label_name": label_

 return pd.DataFrame(arr_map)

img_id label_id label_name

0 0 20 Dangerous curve to the right

1 1 20 Dangerous curve to the right

2 2 20 Dangerous curve to the right

3 3 20 Dangerous curve to the right

4 4 20 Dangerous curve to the right

...

39204 39204 42 End of no passing by vehicles over 3.5 metric ...

39205 39205 42 End of no passing by vehicles over 3.5 metric ...

39206 39206 42 End of no passing by vehicles over 3.5 metric ...

39207 39207 42 End of no passing by vehicles over 3.5 metric ...

39208 39208 42 End of no passing by vehicles over 3.5 metric ...

39209 rows × 3 columns

ids_to_signnames = group_img_id_to_lbl(labels, sign_names)
ids_to_signnames

labels_numpy = ids_to_signnames.to_numpy()

count_of_each_sign = pd.pivot_table(ids_to_signnames,index=["label_id","label_n
count_of_each_sign

img_id

label_id label_name

0 Speed limit (20km/h) 210

1 Speed limit (30km/h) 2220

2 Speed limit (50km/h) 2250

3 Speed limit (60km/h) 1410

4 Speed limit (70km/h) 1980

5 Speed limit (80km/h) 1860

6 End of speed limit (80km/h) 420

7 Speed limit (100km/h) 1440

8 Speed limit (120km/h) 1410

9 No passing 1470

10 No passing for vehicles over 3.5 metric tons 2010

11 Right-of-way at the next intersection 1320

12 Priority road 2100

13 Yield 2160

14 Stop 780

15 No vehicles 630

16 Vehicles over 3.5 metric tons prohibited 420

17 No entry 1110

18 General caution 1200

19 Dangerous curve to the left 210

20 Dangerous curve to the right 360

21 Double curve 330

22 Bumpy road 390

23 Slippery road 510

24 Road narrows on the right 270

25 Road work 1500

26 Traffic signals 600

27 Pedestrians 240

28 Children crossing 540

29 Bicycles crossing 270

30 Beware of ice/snow 450

31 Wild animals crossing 780

count_of_each_sign.plot(kind='bar', figsize=(15, 7))

31 Wild animals crossing 780

32 End of all speed and passing limits 240

33 Turn right ahead 689

34 Turn left ahead 420

35 Ahead only 1200

36 Go straight or right 390

37 Go straight or left 210

38 Keep right 2070

39 Keep left 300

40 Roundabout mandatory 360

41 End of no passing 240

42 End of no passing by vehicles over 3.5 metric tons 240

<matplotlib.axes._subplots.AxesSubplot at 0x7fb42ec88910>

Visualizing the dataset

labels_numpy

array([[0, 20, 'Dangerous curve to the right'],
 [1, 20, 'Dangerous curve to the right'],
 [2, 20, 'Dangerous curve to the right'],
 ...,
 [39206, 42, 'End of no passing by vehicles over 3.5 metric tons'],
 [39207, 42, 'End of no passing by vehicles over 3.5 metric tons'],
 [39208, 42, 'End of no passing by vehicles over 3.5 metric tons']],
 dtype=object)

for n in range(5):
 plt.figure()
 i = np.random.randint(0, high=len(filenames), dtype='int')
 plt.imshow(mpimg.imread(filenames[i]))
 plt.title(labels_numpy[i][2])
 plt.axis('off')

italicised text## One-hot encoding

labels = tf.keras.utils.to_categorical(labels, 43)
labels

array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.],

 [0., 0., 0., ..., 0., 0., 0.],
 ...,
 [0., 0., 0., ..., 0., 0., 1.],
 [0., 0., 0., ..., 0., 0., 1.],
 [0., 0., 0., ..., 0., 0., 1.]], dtype=float32)

labels[0]

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)

len(labels)

39209

Splitting our data into train and validation sets

Create X & y variables
X = filenames
y = labels

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size = 0.2, random
len(X_train), len(y_train), len(X_val), len(y_val)

(31367, 31367, 7842, 7842)

Indented block

Processing image into Tensors

importing necessary tools
import datetime
import os
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Activation, Dropout, Flatten, Dense, Conv2D
from tensorflow.math import confusion_matrix
import matplotlib.image as mpimg

import tensorflow as tf
print("TF version: ", tf.__version__)

TF version: 2.8.0

device_name = tf.test.gpu_device_name()
if "GPU" not in device_name:
 print("No")
else:
 print(device_name)

/device:GPU:0

print(tf.test.is_gpu_available())

WARNING:tensorflow:From <ipython-input-3-ae932be897c3>:1: is_gpu_available (from tens
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
True

Getting our data ready

from google.colab import drive
drive.mount('/content/drive',force_remount=True)

Mounted at /content/drive

train_df = pd.read_csv('/content/drive/MyDrive/gtsrb-german-traffic-sign/Train.
train_df.head()

Width Height Roi.X1 Roi.Y1 Roi.X2 Roi.Y2 ClassId Pa

0 27 26 5 5 22 20 20 Train/20/00020_00000_00000.p

1 28 27 5 6 23 22 20 Train/20/00020_00000_00001.p

2 29 26 6 5 24 21 20 Train/20/00020_00000_00002.p

3 28 27 5 6 23 22 20 Train/20/00020_00000_00003.p

4 28 26 5 5 23 21 20 Train/20/00020_00000_00004.p

Width Height Roi.X1 Roi.Y1 Roi.X2 Roi

count 39209.000000 39209.000000 39209.000000 39209.000000 39209.000000 39209.0000

mean 50.835880 50.328930 5.999515 5.962381 45.197302 44.7283

std 24.306933 23.115423 1.475493 1.385440 23.060157 21.9711

min 25.000000 25.000000 0.000000 5.000000 20.000000 20.0000

25% 35.000000 35.000000 5.000000 5.000000 29.000000 30.0000

50% 43.000000 43.000000 6.000000 6.000000 38.000000 38.0000

75% 58.000000 58.000000 6.000000 6.000000 53.000000 52.0000

max 243.000000 225.000000 20.000000 20.000000 223.000000 205.0000

train_df.describe()

ClassId Path

0 20 Train/20/00020_00000_00000.png

1 20 Train/20/00020_00000_00001.png

2 20 Train/20/00020_00000_00002.png

3 20 Train/20/00020_00000_00003.png

4 20 Train/20/00020_00000_00004.png

train_df = train_df.drop(['Width', 'Height', 'Roi.X1', 'Roi.Y1', 'Roi.X2', 'Roi
train_df.head()

Getting images and their labels

Load sign names file
sign_names = pd.read_csv("/content/drive/MyDrive/gtsrb-german-traffic-sign/sign
sign_names.set_index("ClassId")

sign_names.head(n=10)

ClassId SignName

0 0 Speed limit (20km/h)

1 1 Speed limit (30km/h)

2 2 Speed limit (50km/h)

3 3 Speed limit (60km/h)

4 4 Speed limit (70km/h)

5 5 Speed limit (80km/h)

6 6 End of speed limit (80km/h)

7 7 Speed limit (100km/h)

8 8 Speed limit (120km/h)

9 9 No passinglabel_map = sign_names['SignName'].to_dict()

Create pathnames from image Id's
filenames = ['/content/drive/MyDrive/gtsrb-german-traffic-sign/' + fname for fn
filenames[:10]

['/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00000.png',
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00001.png',
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00002.png',
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00003.png',
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00004.png',
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00005.png',
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00006.png',
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00007.png',
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00008.png',
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Train/20/00020_00000_00009.png']

len(filenames)

39209

labels = train_df['ClassId'].to_numpy()
labels.shape[0]

39209

unique_signs = np.unique(labels)
len(unique_signs)

43

def group_img_id_to_lbl(lbs_ids, lbs_names):
 """
 Utility function to group images by label

 """
 arr_map = []
 for i in range(0, lbs_ids.shape[0]):
 label_id = lbs_ids[i]
 label_name = lbs_names[lbs_names["ClassId"] == label_id]["SignName"].va
 arr_map.append({"img_id": i, "label_id": label_id, "label_name": label_

 return pd.DataFrame(arr_map)

img_id label_id label_name

0 0 20 Dangerous curve to the right

1 1 20 Dangerous curve to the right

2 2 20 Dangerous curve to the right

3 3 20 Dangerous curve to the right

4 4 20 Dangerous curve to the right

...

39204 39204 42 End of no passing by vehicles over 3.5 metric ...

39205 39205 42 End of no passing by vehicles over 3.5 metric ...

39206 39206 42 End of no passing by vehicles over 3.5 metric ...

39207 39207 42 End of no passing by vehicles over 3.5 metric ...

39208 39208 42 End of no passing by vehicles over 3.5 metric ...

39209 rows × 3 columns

ids_to_signnames = group_img_id_to_lbl(labels, sign_names)
ids_to_signnames

labels_numpy = ids_to_signnames.to_numpy()

count_of_each_sign = pd.pivot_table(ids_to_signnames,index=["label_id","label_n
count_of_each_sign

img_id

label_id label_name

0 Speed limit (20km/h) 210

1 Speed limit (30km/h) 2220

2 Speed limit (50km/h) 2250

3 Speed limit (60km/h) 1410

4 Speed limit (70km/h) 1980

5 Speed limit (80km/h) 1860

6 End of speed limit (80km/h) 420

7 Speed limit (100km/h) 1440

8 Speed limit (120km/h) 1410

9 No passing 1470

10 No passing for vehicles over 3.5 metric tons 2010

11 Right-of-way at the next intersection 1320

12 Priority road 2100

13 Yield 2160

14 Stop 780

15 No vehicles 630

16 Vehicles over 3.5 metric tons prohibited 420

17 No entry 1110

18 General caution 1200

19 Dangerous curve to the left 210

20 Dangerous curve to the right 360

21 Double curve 330

22 Bumpy road 390

23 Slippery road 510

24 Road narrows on the right 270

25 Road work 1500

26 Traffic signals 600

27 Pedestrians 240

28 Children crossing 540

29 Bicycles crossing 270

30 Beware of ice/snow 450

31 Wild animals crossing 780

Visualizing the dataset

labels_numpy

array([[0, 20, 'Dangerous curve to the right'],
 [1, 20, 'Dangerous curve to the right'],
 [2, 20, 'Dangerous curve to the right'],
 ...,
 [39206, 42, 'End of no passing by vehicles over 3.5 metric tons'],
 [39207, 42, 'End of no passing by vehicles over 3.5 metric tons'],

31 Wild animals crossing 780

32 End of all speed and passing limits 240
 [39208, 42, 'End of no passing by vehicles over 3.5 metric tons']],
 dtype=object)

for n in range(5):
 plt.figure()
 i = np.random.randint(0, high=len(filenames), dtype='int')
 plt.imshow(mpimg.imread(filenames[i]))
 plt.title(labels_numpy[i][2])
 plt.axis('off')

One-hot encoding

Converting the labels into one hot encoding
labels = tf.keras.utils.to_categorical(labels, 43)
labels[0]

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)

len(labels)

39209

Creating Validation set

Create X & y variables
X = filenames
y = labels

Splitting our data into train and validation sets
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size = 0.2, random
len(X_train), len(y_train), len(X_val), len(y_val)

(31367, 31367, 7842, 7842)

Processing image and turning into Tensors

IMG_SIZE = 32

def process_image(image_path):
 """
 Takes an image file path and turns the image into a Tensor.
 """
 # Read in an image file
 image = tf.io.read_file(image_path)
 # Turn the jpeg image into numerical Tensor with 3 colour channels (Red, Gr

 image = tf.image.decode_png(image, channels=3)
 # Convert the colour channel values from 0-255 to 0-1 values
 image = tf.image.convert_image_dtype(image, tf.float32)
 # Resize the image to our desired value (32, 32)
 image = tf.image.resize(image, size=[IMG_SIZE, IMG_SIZE])
 return image

Turning data into batches

Create a simple function to return tuple
def get_image_label (image_path, label):
 """
 Takes an image file path name and the assosciated label,
 processes the image and reutrns a typle of (image, label).
 """
 image = process_image(image_path)
 return image, label

Define batch size
BATCH_SIZE = 64

Create a function to turn data into batches
def create_data_batches (X, y=None, batch_size=BATCH_SIZE, valid_data=False, te
 """
 Creates batches of data out of image (X) and label (y) pairs.
 Shuffles the data if it's training data but doesn't shuffle if it's validat
 a.
 Also accepts test data as input (no labels).
 """
 # If the data is a test dataset, we probably don't have have labels
 if test_data:
 print("Creating test data batches...")
 data = tf.data.Dataset.from_tensor_slices((tf.constant(X)))
 data_batch = data.map(process_image).batch(BATCH_SIZE)
 # If the data is a valid dataset, we don't need to shuffle it
 elif valid_data:
 print("Creating validation dataset batches...")
 data = tf.data.Dataset.from_tensor_slices((tf.constant(X), tf.constant(
 # Create (image, label) tuples (this also turns the iamge path into a p
 data_batch = data.map(get_image_label).batch(BATCH_SIZE)
 else:
 print("Creating training dataset batches...")
 # Turn filepaths and labels into Tensors
 data = tf.data.Dataset.from_tensor_slices((tf.constant(X), tf.constant(
 # Shuffling pathnames and labels before mapping image processor functio
 data = data.shuffle(buffer_size=len(X))
 # Create (image, label) tuples (this also turns the iamge path into a p

 data_batch = data.map(get_image_label).batch(BATCH_SIZE)
 return data_batch

Creating training and validation batches
train_data = create_data_batches(X_train, y_train)
val_data = create_data_batches(X_val, y_val, valid_data=True)

Creating training dataset batches...
Creating validation dataset batches...

Check out the different attributes of our data batches
train_data.element_spec, val_data.element_spec

((TensorSpec(shape=(None, 32, 32, 3), dtype=tf.float32, name=None),
 TensorSpec(shape=(None, 43), dtype=tf.float32, name=None)),
 (TensorSpec(shape=(None, 32, 32, 3), dtype=tf.float32, name=None),
 TensorSpec(shape=(None, 43), dtype=tf.float32, name=None)))

Visualizing Data Batches

Create a function for viewing images in a data batch
def show_25_images (images, labels):
 """
 Displays a plot of 25 images and their labels from a data batch.
 """
 plt.figure(figsize=(20,20))
 for i in range(25):
 ax = plt.subplot(5, 5, i+1)
 plt.imshow(images[i])
 plt.title(label_map[unique_signs[labels[i].argmax()]])
 plt.axis("off")

Visualizing traing batch
train_images, train_labels = next(train_data.as_numpy_iterator())
show_25_images(train_images, train_labels)

Building the model

Setup input shape to the model
INPUT_SHAPE = [IMG_SIZE, IMG_SIZE, 3]

Setup the output shape
OUTPUT_SHAPE = len(unique_signs)

Creating CNN Model
def traffic_sign_net(input_shape):
 model = Sequential()
 model.add(Conv2D(filters=32, kernel_size=(5, 5), activation='relu', input_s

 model.add(Conv2D(filters=32, kernel_size=(5, 5), activation='relu'))
 model.add(MaxPool2D(pool_size=(2, 2)))
 model.add(Dropout(rate=0.25))
 model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))
 model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))
 model.add(MaxPool2D(pool_size=(2, 2)))
 model.add(Dropout(rate=0.25))
 model.add(Flatten())
 model.add(Dense(256, activation='relu'))
 model.add(Dropout(rate=0.5))
 model.add(Dense(43, activation='softmax'))
 return model

Create a function that creates model
def create_model(input_shape=INPUT_SHAPE, output_shape=OUTPUT_SHAPE):
 # Setup the model layers
 model = traffic_sign_net(input_shape=input_shape)
 # Compile the model
 print("Compiling the model")
 model.compile(
 optimizer=tf.keras.optimizers.Adam(),
 loss='categorical_crossentropy',
 metrics=['accuracy']
)
 return model

model = create_model()
model.summary()

Compiling the model
Model: "sequential"

 Layer (type) Output Shape Param #
===
 conv2d (Conv2D) (None, 28, 28, 32) 2432

 conv2d_1 (Conv2D) (None, 24, 24, 32) 25632

 max_pooling2d (MaxPooling2D (None, 12, 12, 32) 0
)

 dropout (Dropout) (None, 12, 12, 32) 0

 conv2d_2 (Conv2D) (None, 10, 10, 64) 18496

 conv2d_3 (Conv2D) (None, 8, 8, 64) 36928

 max_pooling2d_1 (MaxPooling (None, 4, 4, 64) 0
 2D)

 dropout_1 (Dropout) (None, 4, 4, 64) 0

 flatten (Flatten) (None, 1024) 0

 dense (Dense) (None, 256) 262400

 dropout_2 (Dropout) (None, 256) 0

 dense_1 (Dense) (None, 43) 11051

===
Total params: 356,939
Trainable params: 356,939
Non-trainable params: 0

Training our model

NUM_EPOCHS = 10

Build a fn to train and return a trained model
def train_model():
 """
 Trains a given model and returns the trained version.
 """
 # Create a model
 model = create_model()

 # Fit the model to the data passing it the callbacks we created
 model.fit(x=train_data,
 epochs=NUM_EPOCHS,
 validation_data=val_data,
 validation_freq=1,
)
 return model

Fit the model to data
model = train_model()

Compiling the model
Epoch 1/10
491/491 [==============================] - 4311s 9s/step - loss: 1.7064 - accuracy: 0
Epoch 2/10
491/491 [==============================] - 59s 120ms/step - loss: 0.3169 - accuracy:
Epoch 3/10
491/491 [==============================] - 58s 117ms/step - loss: 0.1704 - accuracy:
Epoch 4/10
491/491 [==============================] - 60s 121ms/step - loss: 0.1281 - accuracy:
Epoch 5/10
491/491 [==============================] - 60s 122ms/step - loss: 0.1116 - accuracy:
Epoch 6/10
491/491 [==============================] - 59s 120ms/step - loss: 0.0857 - accuracy:
Epoch 7/10

491/491 [==============================] - 60s 122ms/step - loss: 0.0738 - accuracy:
Epoch 8/10
491/491 [==============================] - 60s 122ms/step - loss: 0.0655 - accuracy:
Epoch 9/10
491/491 [==============================] - 59s 120ms/step - loss: 0.0594 - accuracy:
Epoch 10/10
491/491 [==============================] - 59s 120ms/step - loss: 0.0554 - accuracy:

Save the entire model as a SavedModel.
!mkdir -p saved_model
model.save('/drive/MyDrive/saved_model/my_model')
new_model = tf.keras.models.load_model('/drive/MyDrive/saved_model/my_model')

Check its architecture
new_model.summary()

INFO:tensorflow:Assets written to: /drive/MyDrive/saved_model/my_model/assets
Model: "sequential_2"

 Layer (type) Output Shape Param #
===
 conv2d_8 (Conv2D) (None, 28, 28, 32) 2432

 conv2d_9 (Conv2D) (None, 24, 24, 32) 25632

 max_pooling2d_4 (MaxPooling (None, 12, 12, 32) 0
 2D)

 dropout_6 (Dropout) (None, 12, 12, 32) 0

 conv2d_10 (Conv2D) (None, 10, 10, 64) 18496

 conv2d_11 (Conv2D) (None, 8, 8, 64) 36928

 max_pooling2d_5 (MaxPooling (None, 4, 4, 64) 0
 2D)

 dropout_7 (Dropout) (None, 4, 4, 64) 0

 flatten_2 (Flatten) (None, 1024) 0

 dense_4 (Dense) (None, 256) 262400

 dropout_8 (Dropout) (None, 256) 0

 dense_5 (Dense) (None, 43) 11051

===
Total params: 356,939
Trainable params: 356,939
Non-trainable params: 0

accuracy = model.history.history['accuracy']
loss = model.history.history['loss']

validation_loss = model.history.history['val_loss']
validation_accuracy = model.history.history['val_accuracy']

plt.figure(figsize=(15, 7))
plt.subplot(2, 2, 1)
plt.plot(range(NUM_EPOCHS), accuracy, label='Training Accuracy')
plt.plot(range(NUM_EPOCHS), validation_accuracy, label='Validation Accuracy')
plt.legend(loc='upper left')
plt.title('Accuracy : Training Vs Validation ')

plt.subplot(2, 2, 2)
plt.plot(range(NUM_EPOCHS), loss, label='Training Loss')
plt.plot(range(NUM_EPOCHS), validation_loss, label='Validation Loss')
plt.title('Loss : Training Vs Validation ')
plt.legend(loc='upper right')
plt.show()

Creating test dataset batches

ClassId Path

0 16 Test/00000.png

1 1 Test/00001.png

2 38 Test/00002.png

3 33 Test/00003.png

4 11 Test/00004.png

test_df = pd.read_csv('/content/drive/MyDrive/gtsrb-german-traffic-sign/Test.cs
test_df = test_df.drop(['Width', 'Height', 'Roi.X1', 'Roi.Y1', 'Roi.X2', 'Roi.Y
test_df.head()

test_img_paths = ['/content/drive/MyDrive/gtsrb-german-traffic-sign/' + path fo
test_img_paths[:10]

['/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00000.png',
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00001.png',
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00002.png',
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00003.png',
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00004.png',
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00005.png',
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00006.png',
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00007.png',
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00008.png',
 '/content/drive/MyDrive/gtsrb-german-traffic-sign/Test/00009.png']

X_test = create_data_batches(test_img_paths, test_data=True)
y_test = list(test_df['ClassId'])
y_test[:10]

Creating test data batches...
[16, 1, 38, 33, 11, 38, 18, 12, 25, 35]

Making and Evaluating predictions using a trained model on test
data

predictions = model.predict(X_test, verbose=1)

198/198 [==============================] - 1370s 7s/step

Function to convert probabilities to labels
def get_pred_label(prediction_probabilities):
 """
 Turns an array of prediction probabilities into a label.
 """
 return unique_signs[np.argmax(prediction_probabilities)]

Turning probabilities to labels
pred_labels = []
for i in predictions:
 pred_labels.append(get_pred_label(i))
pred_labels[:10]

[16, 1, 38, 33, 11, 38, 18, 12, 25, 35]

Getting the accuracy of the model on test data
acc = accuracy_score(y_test, pred_labels)
acc

0.9782264449722882

batch_size = 100
num_plot_column = 5
num_plot_row = batch_size // num_plot_column + (batch_size % num_plot_column >

plt.figure(figsize=(15,50))
plt.subplots_adjust(hspace=0.5)
for n in range(batch_size):
 plt.subplot(num_plot_row,num_plot_column,n+1)
 plt.imshow(mpimg.imread(test_img_paths[n]))
 color = "green" if pred_labels[n] == test_df['ClassId'][n] else "red"
 plt.title(label_map[pred_labels[n]].title(), color=color)
 plt.axis('off')
_ = plt.suptitle("Model predictions (green: correct, red: incorrect)")

print("Accuracy of the shown eval batch: " + str(accuracy_score(y_test, pred_la

Accuracy of the shown eval batch: 0.9782264449722882

import seaborn as sns

test_labels = []
preds_labels = []
for n in range(len(y_test)):
 test_labels.append(label_map[y_test[n]])
 preds_labels.append(label_map[pred_labels[n]])

cm = confusion_matrix(y_test, pred_labels)
ax = plt.subplot()
sns.set(rc = {'figure.figsize':(50,50)})
axis_labels = sign_names['SignName'].to_numpy()
sns.heatmap(cm, annot=True, fmt='g', ax=ax, cmap="YlGnBu", xticklabels=axis_lab
labels, title and ticks
ax.set_xlabel('Predicted labels');ax.set_ylabel('True labels'); ax.set_title('C

Converting to t�ite model

INFO:tensorflow:Assets written to: /content/drive/MyDrive/output/model1649106813/asse
INFO:tensorflow:Assets written to: /content/drive/MyDrive/output/model1649106813/asse
/content/drive/MyDrive/output/model1649106813' '

import time
t = time.time()

export_path = "/content/drive/MyDrive/output/model{}".format(int(t))
model.save(export_path, save_format='tf')

export_path

OUTPUT_TFLITE_MODEL = "/content/drive/MyDrive/output/saved_model.tflite"

Convert the model
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()

Save the TF Lite model.
with tf.io.gfile.GFile(OUTPUT_TFLITE_MODEL,'wb') as f:
 f.write(tflite_model)

INFO:tensorflow:Assets written to: /tmp/tmpuqvusw4b/assets
INFO:tensorflow:Assets written to: /tmp/tmpuqvusw4b/assets
WARNING:absl:Buffer deduplication procedure will be skipped when flatbuffer library i

Testing the t�ite model

OUTPUT_TFLITE_MODEL = "/content/drive/MyDrive/output/saved_model.tflite"

for image_val_batch, label_val_batch in val_data:
 print("Image batch shape: ", image_val_batch.shape)
 print("Label batch shape: ", label_val_batch.shape)
 break

Image batch shape: (64, 32, 32, 3)
Label batch shape: (64, 43)

Load the TFLite model and allocate tensors.
interpreter = tf.lite.Interpreter(model_path=OUTPUT_TFLITE_MODEL)
interpreter.allocate_tensors()

input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

batch_size = image_val_batch.shape[0]
predicted_id = np.zeros(batch_size)

for i, image in enumerate(np.split(image_val_batch, batch_size)):
 interpreter.set_tensor(input_details[0]['index'], image)
 interpreter.invoke()
 output_data = interpreter.get_tensor(output_details[0]['index'])
 predicted_id[i] = np.argmax(output_data)

label_id = np.argmax(label_val_batch, axis=-1)

num_plot_column = 5
num_plot_row = batch_size // num_plot_column + (batch_size % num_plot_column >

plt.figure(figsize=(20,50))

plt.subplots_adjust(hspace=0.5)
for n in range(batch_size):
 plt.subplot(num_plot_row,num_plot_column,n+1)
 plt.imshow(image_val_batch[n])
 color = "green" if predicted_id[n] == label_id[n] else "red"
 plt.title(label_map[predicted_id[n]].title(), color=color)
 plt.axis('off')
_ = plt.suptitle("Model predictions (green: correct, red: incorrect)")

print("Accuracy of the shown eval batch, with the TensorFlow Lite model:")
accuracy_score(label_id, predicted_id)

Accuracy of the shown eval batch, with the TensorFlow Lite model:
1.0

Testing a single image

test_me_path = '/content/drive/MyDrive/test_inputs/5.jpg'

<matplotlib.image.AxesImage at 0x7fd445e7c410>

plt.imshow(mpimg.imread(test_me_path))

input_data = process_image(test_me_path)

input_data = tf.expand_dims(input_data, axis=0)

Load the TFLite model and allocate tensors.
interpreter = tf.lite.Interpreter(model_path="/content/drive/MyDrive/output/sav
interpreter.allocate_tensors()

Get input and output tensors.
input_details = interpreter.get_input_details()

output_details = interpreter.get_output_details()

Test the model on random input data.
input_shape = input_details[0]['shape']
interpreter.set_tensor(input_details[0]['index'], input_data)

interpreter.invoke()

The function `get_tensor()` returns a copy of the tensor data.
Use `tensor()` in order to get a pointer to the tensor.
output_data = interpreter.get_tensor(output_details[0]['index'])
print(output_data)

[[2.44010025e-17 2.64569996e-13 6.75505333e-13 4.88851711e-12
 6.93470617e-15 5.08395340e-11 6.52302587e-17 1.81415804e-18
 4.38870375e-16 1.54678752e-11 3.07766546e-09 4.82838161e-17
 7.73513903e-13 1.50435247e-13 1.00000000e+00 1.10711557e-13
 3.16539488e-17 2.80879782e-08 1.89214506e-14 8.34889936e-18
 5.27447967e-15 6.12526540e-18 4.64495792e-14 3.92996055e-15
 1.82171602e-19 2.47348772e-13 7.02011005e-10 3.01682902e-22
 1.38862661e-16 2.63118628e-13 2.05917142e-18 1.81798597e-14
 2.01926637e-18 1.42198468e-17 1.76539833e-19 3.00462527e-19
 3.78759476e-20 9.40122617e-24 2.07759738e-16 5.36607605e-20
 2.69131419e-20 1.86145644e-18 1.66279754e-18]]

unique_signs[np.argmax(output_data)]

14

Stop' '

label_map[unique_signs[np.argmax(output_data)]]

