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Summary  

The global elderly population has increased dramatically as the number of individuals aged 60 and above 

reached 962 million, more than a two-fold increase from the 382 million recorded in 1980. By 2050, this 

number is projected to double once more, surpassing 2.1 billion individuals. As people age, their physical 

activity and capacity to perform daily tasks decrease, impacting both their mental and physical health. 

Moreover, a large percentage of elderly people living in residential care settings have dementia or other 

cognitive impairments. Due to the limited number of staff members compared to the number of residents in 

care facilities, using technology can enhance the care provided. The ability to track elderly patients with 

cognitive impairment or dementia can prevent wandering and getting lost. Previous research has focused on 

applying machine learning and deep learning models to recognize the activities of healthy and younger 

populations, but there has been a lack of attention given to the recognition of activities performed by the 

elderly. This study aims to provide assistance to elderly people by integrating Human Activity Recognition 

(HAR) and Indoor Positioning, monitoring patients’ activities in different indoor and outdoor environments in 

real-time, as well as simultaneously locating their positions in indoor environments. We propose a solution 

that incorporates artificial intelligence, particularly deep learning models, and is based on sensor readings 

collected from a smartwatch. This method aims to detect five classes of activities: walking, sitting, laying 

down, going upstairs, and going downstairs. Artificial Neural Networks (ANNs), Convolutional Neural 

Networks (CNNs), Long-Short Term Memory (LSTM), and CNN-LSTM model are implemented and their 

performances are comprehensively compared. Upon evaluation, the CNN-LSTM model outperformed all the 

other HAR models, achieving an F1-score of 98.95%. As for the Indoor Positioning System (IPS), it is based 

on RSSI measurements of a BLE beacon and was implemented using machine learning classifiers including 

k-Nearest Neighbor (kNN), Support Vector Machine (SVM) with linear, polynomial, and RBF kernels, 

NuSVC, Random Forest, Decision Tree, Gradient Boosting, Gaussian Naïve Bayes, Linear Discriminant 

Analysis, and Quadratic Discriminant Analysis. A Voting Classifier was implemented using a majority ‘hard’ 

voting of the five best-performing classifiers. Cross-validation using a shuffle-split method (n = 10 times) was 

employed for dividing the dataset into training and testing subsets with an 80:20 split ratio. The Random Forest 

classifier achieved the highest mean F1-score of 84.12%, whereas the Voting Classifier achieved the second 

highest mean F1-score at 83.88%. 
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Chapter 1: Introduction 

1. Introduction 

In recent times, the field of Human Activity Recognition (HAR) has become increasingly popular in research. 

The use of sensors, accelerometers, and advancements in technology such as computer vision, machine 

learning, artificial intelligence, and IoT have enabled the development of numerous applications that can 

recognize, detect, and categorize human behavior. These applications are often designed to be low-cost and 

energy-efficient, utilizing information gathered from various smartphone sensors and wearable devices, such 

as accelerometer sensors and gyroscope sensors, as well as factors such as time and location. When integrated 

with other technologies, such as the Internet of Things, it can be applied in various areas such as healthcare, 

sports, and industry [1].  

According to the World Health Organization, a significant portion of the human population, approximately 1.3 

billion individuals, experience significant disability [2]. There is a lack of adequate resources to meet the needs 

of people with disabilities, one of which is the requirement for a constant companion to oversee their activities 

[3],[4]. To ensure the safety and protection of people with disabilities from potential harm or accidents, 24-

hour supervision is necessary [5]. In 2017, there were 962 million individuals aged 60 and above worldwide, 

more than double the 382 million people in that age range in 1980. It is projected that by 2050, the number of 

elderly individuals will exceed 2.1 billion, with two-thirds of them residing in developing countries where 

their population is increasing at a faster rate than in industrialized countries [6]. It is also expected that by 

2050, nearly 8 out of 10 of the world's elderly population will be living in underdeveloped countries. The 

percentage of people aged 60 and over who live independently, either alone or with a spouse, varied greatly 

among the 143 countries or territories with available data, ranging from 2.3% in Afghanistan to 93.4% in The 

Netherlands [7]. As people age, their physical activity and ability to perform everyday tasks decrease, which 

can negatively impact both their physical and mental health. While there have been many studies using 

machine learning and deep learning methods to recognize human activities, there are very few that focus 

specifically on the recognition of elderly people's activities. 

The importance of being physically active for older individuals in order to decrease their risk of developing 

comorbidities and to increase their quality of life [8] is well-known. Monitoring Physical Activity (PA) under 

real-world conditions can assist in determining if the recommended levels of PA are being met and can be used 

for feedback. Additionally, older individuals tend to increase their activity levels when monitoring PA, likely 

because monitoring increases motivation to achieve PA goals [9]. An activity classification method with high 

accuracy is crucial for providing appropriate feedback to older individuals. While many classification 

algorithms have been proposed for sensor-based activity recognition, most studies have focused on younger 

adults. Due to potential differences in movement patterns between the two age groups, algorithms trained on 

young individuals may not be as accurate when applied to data from older individuals [10]. Therefore, there is 

a need to develop a classifier specifically tailored for older individuals. A small number of studies have 
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specifically focused on older individuals using inertial sensors [11]–[14]. These studies utilized a combination 

of accelerometry, gyroscopes, and magnetometers, which were processed using neural networks, support 

vector machines, decision trees, or random forests to achieve accuracies of 82-93% [11]–[14]. These studies 

indicate that accurate activity classification in older individuals is possible.  

In recent years, there has been an increased interest in using artificial intelligence for human activity 

recognition (HAR) due to its self-learning nature and robust classification models [15]. Various studies have 

been conducted using machine learning and deep learning techniques for HAR [16], [17], but only a few have 

focused on developing a framework specifically for elderly people. Kaixuan Chen et al. [18] provided an 

overview of the challenges and opportunities in the use of deep learning techniques for HAR. In order to 

maximize performance, it is important to utilize multimodal features, which can help to distinguish between 

different types of sensor data [19]. Attention-based mechanisms have been used to identify the most important 

and distinctive modalities in HAR [20]. Chen et al. [21] used multiple agents to focus on modalities related to 

sub-motions, which improved performance compared to other methods, but it has not yet been validated on a 

dataset of the elderly. 

Furthermore, as people with dementia require more support for their daily activities, many move to assisted 

living facilities. "Residential care" is a broad term used to describe these types of environments, which are 

intended to help older adults maintain their independence. A large percentage of people living in residential 

care settings in developed countries have dementia or cognitive impairment [22], [23]. Due to the limited 

number of staff members compared to the number of residents in these facilities, using technology can 

potentially help to fill in resource gaps and enhance the care provided. Knowing the location of an elderly 

patient is crucial for a number of reasons. One of the main reasons is safety. Elderly patients are at a higher 

risk of accidents and injuries, such as falls, and being able to quickly locate and respond to an emergency can 

greatly improve the chances of a positive outcome. Additionally, for patients with cognitive impairment or 

dementia, the ability to track their location can prevent wandering and getting lost, which can be a major 

concern for both patients and their caregivers. The use of real-time location systems (RTLSs) significantly 

reduces the frequency and duration of wandering incidents in older adults with dementia, and also improves 

the safety of these individuals.  

Real-time locating systems (RTLS), also known as indoor positioning or location systems, are technologies 

primarily used to track individuals and equipment in indoor environments in real or near-real time. They can 

be incorporated into nurse call or safety systems and consist of a wearable device that is worn by an individual, 

a number of receiver devices embedded in the environment, and software to visualize location data on a facility 

map [24], [25]. The wearable device, such as a tag or bracelet, contains a sensor that communicates with the 

receiver devices, which are connected to a wireless network, to continuously track people or items in real time. 

Non-wearable sensor technologies, such as near-field radio-frequency ID (RFID) tags or passive infrared (IR) 

sensors, can also be deployed as RTLS in clinical settings to detect the movement of individuals passing 
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through doors or at a room-level scale. For higher accuracy, wearable systems such as Bluetooth or Ultra-

wideband (UWB) are used when the intention is to collect within-room movement patterns at a regular 

sampling rate over time. RTLS provides a vast amount of data on an individual’s location over time and can 

characterize movement through a well-defined target environment. RTLS installations have been studied in a 

wide variety of healthcare settings, such as monitoring residents/patients and staff movements, as well as assets 

such as surgical equipment [26]–[29]. 

Context-aware computing, smart connection with existing networks, and cost-effective low-power wireless 

technologies are essential components of the Internet of Things (IoT) idea. One of the most recent IoT 

innovations, Bluetooth Low Energy (BLE), is particularly well-suited for ultra-low power sensors that use 

small batteries. Bluetooth is a wireless technology standard for transmitting data across short distances. It is 

also a commonly used technology in wireless personal area networks and is common among mobile devices 

[30]. Due to its low cost and ease of deployment, Bluetooth has been employed for indoor localization [31], 

[32]. BLE is an effective replacement for indoor positioning systems (IPS) that provides good accuracy and 

easy setup [33]. Indoor positioning using BLE technology is becoming increasingly important in the 

supervision of elderly patients, allowing caregivers to track the location of patients within a facility, such as a 

hospital or assisted living facility, in real time. This helps to ensure the safety and well-being of elderly 

patients, as it allows caregivers to quickly respond to any potential issues, including patients falling, 

wandering, or becoming lost or unconscious. Furthermore, BLE indoor positioning can also be used to monitor 

the activity levels of elderly patients and track their movements over time, providing valuable information for 

healthcare professionals to assess their physical and mental well-being. Overall, indoor positioning using BLE 

technology can be a powerful tool for improving the care and supervision of elderly patients, providing 

caregivers with valuable information to help keep patients safe and healthy. 

This study aims to provide assistance to elderly people by monitoring their activities in different indoor and 

outdoor environments in real-time using data collected from a smartwatch, as well as simultaneously locating 

their positions in indoor environments in real-time using BLE beacons. Smartwatches have been commonly 

used to monitor human activities, and the data used in this study include routine activities such as sitting, 

walking, going up and down stairs, and lying down. This study aims to develop a human-activity-monitoring 

and localization application for elderly people, and for this purpose, it is important to use human activity 

recognition (HAR) and Indoor Positioning System (IPS) algorithms that have high accuracy, precision, and 

recall. Several deep learning approaches for activity recognition are implemented and evaluated. This study 

aims to determine the most effective approach for developing a HAR and IPS framework for elderly people. 

For HAR, we compare the performance of deep learning approaches such as the Artificial Neural Network 

(ANN), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and CNN-LSTM. The 

Long Short-Term Memory Network, which is a variation of recurrent neural network (RNN), is particularly 

well suited for handling temporal sequences. As for IPS, several supervised machine-learning algorithms for 

indoor localization are implemented and evaluated. The performance of these algorithms is evaluated using 
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several metrics, including confusion matrices, precision, recall, accuracy, F1-score, and computation speed. A 

comprehensive comparison of the algorithms is presented to give a better understanding of their performance. 

Finally, a web application is developed to exploit the models’ capabilities in recognizing human activities and 

detecting the location of an individual in real time. 

 

2. Objectives 

A Human Activity Recognition (HAR) system will be integrated with an Indoor Positioning System (IPS) to 

monitor elderly or ill persons and take action if abnormal behavior is detected, or harmful occurrence takes 

place. Thus, the objectives for this project are as follows: 

• Creating a dataset of sensor data of 5 classes: sitting, walking, lying down, going upstairs, and going 

downstairs. 

• Detecting the person's activities in real-time, such as whether they are sitting, walking, lying down, 

going upstairs, or going downstairs, using a wearable device connected to a database. 

• Comparing various deep learning techniques, including Artificial Neural Networks (ANN), 

Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and CNN-LSTM. 

• Creating a BLE-based Indoor Positioning System (IPS) to locate the monitored elderly person inside 

a building in real time. 

• Comparing several supervised machine learning algorithms and their performance in detecting the 

location of the elderly individual in an indoor environment. 

• Integrating the HAR and IPS systems into one framework. 

 

3. Project Impacts 

The following is a list of the proposed project’s impacts: 

• Introducing a novel framework integrating Human Activity Recognition and Indoor Positioning 

• Novel HAR dataset of 19 sensor features covering 5 activities: sitting, walking, lying down, going 

upstairs, and going downstairs 

• Real-time activity recognition and indoor positioning via a secure Web App 

• Comprehensive analysis and performance comparison of DL models: ANN, CNN, LTSM, and CNN-

LSTM for HAR 

• Comprehensive comparison of the performance of 11 machine learning classifiers for indoor 

positioning using BLE beacon’s RSSI values 
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Chapter 2: Literature Survey 

1. Human Activity Recognition 

The study of human activity recognition (HAR) makes use of two types of sensors: ambient sensors and 

wearable sensors. Ambient sensors are fixed in a specific location, and wearable sensors are worn by the user. 

One common ambient sensor used for HAR is a video camera, which uses computer vision techniques to 

identify human activity from videos or images [34]. With advancements in sensing technology, a depth camera 

can now capture 3D data in real-time, leading to further research in activity recognition from 3D data [35]. In 

addition, recent developments in wireless technology have led to the use of wireless signals for activity 

recognition, as the presence and movement of humans can affect the channel state information (CSI) of 

wireless signals [36]. This has sparked many recent research efforts in CSI-based activity recognition [36], 

[37]. These ambient sensor-based methods do not require a device to be worn by the user, making them ideal 

for security purposes and interactive applications. However, the drawback of these methods is that they require 

predetermined infrastructures such as video and Wi-Fi devices, which can be difficult to attach to individuals 

during daily activities. 

The use of wearable sensors for human activity recognition became necessary due to the limitations of ambient 

sensors. The first activity recognition using wearable sensors, which utilized an accelerometer for posture and 

motion detection, was proposed in the 1990s [38]. The accelerometer is the most commonly used sensor for 

activity recognition, as noted in multiple studies [39], [40]. A review of techniques for physical human activity 

recognition utilizing wearable inertial sensor data is presented by Attal et al. [41]. Lara and Labrador also 

conducted a survey of the current state of the art in activity recognition using wearable sensors [42]. With 

advancements in sensor technology, smartphones now have various sensors including accelerometers, 

gyroscopes, magnetometers, and barometers which can be combined for activity recognition. Shoaib et al. 

proposed an activity recognition method using smartphone motion sensors [43]. In comparison to ambient 

sensor-based methods, wearable sensors are not limited by coverage and can capture continuous activities. 

Traditional machine learning methods for activity recognition usually involve feature extraction and 

classification. The performance of these methods heavily relies on the extracted features, which requires 

significant human effort and is a major challenge. Features used for activity recognition include time domain 

features (e.g. mean, standard deviation, variance, interquartile range), frequency domain features (e.g. Fourier 

Transform, Discrete Cosine Transform), and others (Principal Component Analysis, Linear Discriminant 

Analysis, Autoregressive Model) [42]. For activity classification, there are numerous classic methods such as 

decision trees [44], Bayesian [45], neural networks [46], k-nearest neighbors [47], regression methods [48], 

support vector machines [49], and Markov models [50]. 

A concept for a human activity recognition system built on the Android platform was proposed by Usharani J 

et al. [51]. They developed a program that facilitated online training and classification and used accelerometer 
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data for classification. They improved the performance, accuracy, and execution time of the k-NN classifier 

on the Android platform by using the clustered k-NN technique. They came to the conclusion that the device 

types and capabilities had an impact on the classification times as well. A real-time HAR framework for live 

prediction of human physical motions based on smartphone inertial sensors was also proposed by Meysam, 

Vakili, et al. [52]. Six cumulative learning algorithms were utilized to evaluate the system's performance on a 

total of 20 distinct tasks, and all of them were contrasted with cutting-edge HAR techniques like Decision 

Trees (DTs), AdaBoost, etc. The best accuracy was provided by incremental k-NN and Naïve Bayes, both of 

which had a 95% accuracy. Using a machine learning technique, Jirapond Muangprathub et al. [53] devised a 

new elderly person tracking system. The k-NN model with a k value of 5 was utilized in this study, and it was 

able to detect older people's real-time activity with the best accuracy of 96.4%. Additionally, they developed 

a system that allows an old person to view the information in a geographical manner and, in an emergency, 

utilize a messaging device to seek assistance.  

In recent years, deep learning has gained significant attention and has been implemented in various fields, 

including human activity recognition. Researchers have applied convolutional neural networks (convnets) to 

human activity recognition using sensor signals, but these methods have limitations. For example, Zheng et al. 

used a one-layer convolutional network which resulted in low accuracy [54]. Ronao and Cho proposed a deep 

learning method that classified six types of activities, but it only used accelerometers and magnetometers which 

made it difficult to differentiate vertical activities such as going upstairs and downstairs [55]. Gu et al. proposed 

a smartphone-based activity recognition method that utilized four types of sensor data, including an 

accelerometer, gyroscope, magnetometer, and barometer, but it only used a two-layer structure that did not 

fully utilize the non-linear capabilities of deep learning, resulting in performance defects [56]. Ravi et al. 

proposed a deep learning method for human activity recognition using low-power devices, but it relied on a 

manual feature selection strategy to extract features that required significant human intervention [57]. A CNN 

was suggested by Baoding Zhou et al. [58] for the detection of indoor human activities. Based on data acquired 

by cellphones' accelerometers, magnetometers, gyroscopes, and barometers, a total of nine separate activities 

were identified. The proposed approach was successful in achieving a remarkable accuracy of 98%. 

Combinations of CNN and LSTM were employed by Yashi Nan et al. [59] to identify the activities of elderly 

people. A multi-channel CNN-LSTM model was able to attain the greatest accuracy of 81.1% out of all the 

combinations.  

In [58], a deep learning-based approach was developed to recognize indoor activities by utilizing data from 

multiple sensors on a smartphone. A new type of CNN was designed specifically to analyze one-dimensional 

sensor data and automatically learn relevant features. Results of experiments indicate that the proposed method 

has an accuracy rate of 98.33% for identifying nine different activities, including standing still, walking, going 

upstairs, using an elevator, using an escalator, going downstairs, turning, and more. The significance of this 

research is the development of an efficient deep-learning framework for recognizing indoor activities, which 

can be applied in indoor localization. Additionally, a large database of pedestrian activity data, consisting of 
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over 6 GB of information from accelerometers, magnetometers, gyroscopes, and barometers collected from 

various types of smartphones, was created. 

 

Figure 1: Architecture of Hayat et al.’s [60] LSTM model for human activity recognition 

Hayat et al.’s study [60] used a dataset from the University of California, Irvine (UCI) for its research. The 

data was collected from a group of participants aged between 19 and 48 who all had smartphones. The 

accelerometer and gyroscope of the phones were used to capture the acceleration and angular velocity of the 

data at a sample rate of 50Hz. To process the signals, a median filter, and a notch filter with a drop frequency 

of 20Hz was applied. The dataset had 561 features and 10,299 samples. The data was divided into two sections, 

with 80% being used for training and 20% being used for testing. This means that there were 8240 training 

data and 2059 testing data. The dataset includes six different categories of user activity: sitting, walking, going 

upstairs, going downstairs, standing, and lying. Additionally, the system was cross-validated on another dataset 

called "Activity recognition with healthy older people using a battery-less wearable sensor dataset," which was 

collected from 14 participants aged between 66 and 86 in two clinical rooms. This dataset had 75,128 samples 

and was categorized into four different user activities: sitting on the bed (16,406 instances), sitting on the chair 

(4911 instances), lying on the bed (51,520 instances), and ambulating (walking or standing within the room) 

(2291 instances). Limited pre-processing was done to enhance the models' generalization. The only pre-

processing technique used was Principal Component Analysis (PCA) for dimensionality reduction for optimal 

processing. PCA is used to compress the dataset into a lower-dimensional feature space while preserving 

important information. 
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Figure 2: Architecture of Hayat et al.’s [60] artificial feed-forward neural network with 3 hidden layers 

In Hayat et al.’s work [60], the experimental results of various conventional machine learning and deep 

learning methods for activity detection in elderly individuals are presented and discussed. To ensure stability, 

each experiment was repeated 10 times due to the random assignment of initial weights and parameters. The 

average results are presented in the study for consistency. The study found that the Long Short-Term Memory 

(LSTM) approach, shown in Figure 1, was the most successful among all the methods tested, with the Artificial 

Neural Network (ANN), shown in Figure 2, having the best accuracy in classifying "sitting" for both 2-fold 

and 10-fold cross-validation. Deep learning methods, such as ANN and LSTM, performed better than 

conventional machine learning methods in terms of accuracy. LSTM had the highest overall accuracy at 

95.05%. Additionally, it was observed that the model had difficulty separating "going upstairs" and "going 

downstairs" activities, as they were often misclassified. Results showed that the LSTM classifier using 10-fold 

cross-validation had the best precision, recall, accuracy, and F1-score values at 92.87%, 85.32%, 95.05%, and 

88.94%, respectively, however, the Support Vector Machine (SVM) had the best processing time at 0.08 and 

0.42 min in both 2-fold and 10-fold cross-validation. The study also tested the proposed method on another 

dataset and found that it performed well even on an imbalanced dataset. The study concludes that deep learning 

methods are more suitable for human activity recognition of elderly people, but if processing time is a concern, 

machine learning methods, particularly SVM, may be a better option. 

In the field of activity recognition, Convolutional Neural Networks (CNN) and Long Short-Term Memory 

(LSTM) are frequently used among deep learning techniques  [14], [61], [62]. Studies have shown that CNNs 

can achieve high accuracy levels, such as in [63] where a 1D CNN model was proposed for simple physical 

activity classification using triaxial acceleration data with six activity classes and achieved 93% accuracy. In 

[61], a multichannel CNN model was created to process data from multiple inertial measurement units in 

parallel channels. Additionally, combining LSTM with a CNN, as in [64], can improve results by six percent 
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compared to a CNN alone. Various neural network architectures have been developed and have achieved state-

of-the-art results, however, there is a lack of direct comparison of their performance for activity recognition. 

Additionally, it is worth investigating how these deep learning algorithms perform with older individuals. 

In [59], the researchers evaluated deep learning techniques, including CNN and LSTM, by using only 

accelerometry data from 53 older individuals (average age of 83.8 ± 3.8 years, 38 of them were male) 

performing various activities under controlled conditions. The activities were grouped into categories such as 

lying, sitting, standing, transitioning, walking, going upstairs, and going downstairs. The researchers tested 

four different models, including a 1D CNN, a multichannel CNN, a CNN-LSTM, and a multichannel CNN-

LSTM. They evaluated the models based on their accuracy and computational efficiency. The results showed 

that the multichannel CNN-LSTM model had the highest accuracy of 81.1%, and it was able to classify the 

activities with an acceptable level of complexity. Specifically, the accuracy of the model was 67.0% for lying, 

70.7% for sitting, 88.4% for standing, 78.2% for transitions, 88.7% for walking, 65.7% for walking downstairs, 

and 68.7% for walking upstairs. The study concluded that the multichannel CNN-LSTM model can be used 

for recognizing the activities of older people using smartphone data. 

2. Indoor Positioning System 

Propagation-based and fingerprint-based methods for indoor situating have been primarily used in Wi-Fi-based 

area frameworks [65]. Triangulation or trilateration, shown in Figure 3, is used in propagation-based 

techniques to identify transmitters in known directions. In  [66], Jayakody et al. use an indoor propagation 

model of sorts to estimate the distance between the smartphone and visible transmitters, and they then use 

these distances to estimate the location of the smartphone. Due to the dynamic nature of signals and signal 

attenuation, they are extremely inaccuracy prone while operating in an interior setting. However, area 

fingerprint coordinating approaches assess the place coherently, the framework gathers large amounts of data, 

and a series of explorations and investigations are carried out to offer a reference to the location. Both of these 

tools proactively take use of the proliferation of modern, intelligent smartphones and their rapidly increasing 

hardware capabilities [67].  

Indoor Positioning Systems can also be based on RSSI and utilizing BLE technology [68]. Compared to 

alternative methods like Wi-Fi, GSM, or GPS, the system is more energy efficient. Because these BLE tags 

are simple to set up and may operate for several months on a single small battery, deployment is rapid. A BLE 

device can perform in several modes depending on the functionality that is needed. The neighbor-finding 

process has three modes: advertising, scanning, and initiating [68]. It uses 40 channels of 2 MHz each to 

operate in the 2402-2480 MHz frequency range. One of the main explanations for why BLE uses such low 

energy is the central-peripheral interaction. A peripheral device (such as a BLE tag) may simply broadcast its 

information while nearby central devices (such as smartphones) can collect it. BLE often functions in a central 

and periphery role using a client/server approach. One or more servers can be accessed by a client after 

connecting [69]. Either the master or the slave roles are used by BLE. A slave can only be linked to one master, 
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but a master can handle several simultaneous connections with a variety of slave devices. In order to find 

slaves, the master monitors certain ad channels [70]. Data is sent as connection events, where the slave and 

master wake up and exchange frames to keep the system synchronized. Both gadgets are in sleep mode for the 

remainder of the time. Only when requested, the BLE device communicates [71]. 

 

Figure 3: Trilateration algorithm [66] 

Cabarkapa et al. [72] give a comparative analysis of modern BLE indoor positioning solutions taking into mind 

the categorization, comparison, and variety concerns of characteristics that are necessary for building new 

indoor positioning techniques. Accuracy, RF signal coverage, availability, power consumption, and lowest 

costs for interior installations are requirements for various application scenarios. It is necessary to construct 

and maintain an RSSI-based BLE infrastructure with a number of optimizations to increase positioning 

accuracy if the IPS demands greater precision (1.5m) for 80% of the time [72]. According to Cabarkapa et al. 

[72], BLE IPS systems mostly employ three techniques: Trilateration, BLE Fingerprinting, and BLE Proximity 

Detection. 

Trilateration is a location estimation technique with a trigonometric foundation. This method makes use of 

distance measurements to at least three well-known reference sites (beacon nodes or APS) [73]. The distance 

is determined by the RSSI that the RPs received. For the purpose of determining their position, RSSI data are 

converted into distances using the RF propagation model [74]. Due to the indoor RF propagation channel's 

considerable variability, this technique does not provide the most precise estimate, but it does not need any 
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configuration or calibration procedures. The trilateration equations can be solved using a variety of 

mathematical techniques. Three techniques are covered in [75]: centroid placement, three-border positioning, 

and least square estimation (LSE). BLE Fingerprinting (scene analysis) is the process of fingerprinting is an 

RSSI-based scene analysis in which characteristics (or fingerprints) of nearby reference points are first 

gathered at each site in the areas of interest, followed by the creation of a fingerprint database[76]. During the 

training phase, RSSI fingerprints are collected at various reference points and stored in a database. This process 

is repeated for multiple locations and the resulting set of fingerprints is referred to as a radio map [76]. In the 

determination phase, a mobile user takes measurements of RSSI values at an unknown location, then compares 

these measurements to the fingerprints in the training database using a positioning algorithm to determine their 

likely location. BLE Proximity Detection is using proximity-based IPS based on its proximity to other BLE 

devices or beacons. Information about the symbolic relative position is provided by proximity algorithms. The 

most straightforward proximity-based strategy is to choose the node's location with the strongest signal [77]. 

In order to construct a relative ordering of nodes based on their proximity to the target device, information 

regarding RF signal strength is needed. Push notifications are sent to the user's smartphone or tablet when the 

BLE beacon is in close proximity to the user [78]. This approach does not reveal the device's precise location. 

This technique necessitates a widespread deployment of BLE beacons in order to attain the best accuracy. The 

implementation of proximity approaches is very straightforward and does not need calibration [79]. 

 

Figure 4: Lin et al. [69] system architecture 

Lin et al. [69] implement a mobile-based indoor positioning system using mobile applications (APP) with the 

iBeacon solution based on Bluetooth Low Energy (BLE) technology while using the Received Signal Strength 

(RSS) based localization method to estimate the locations of the patients. The four main parts of the system 

architecture, shown in Figure 4, are the iBeacon deployment, patient mobile applications, system server side, 

and monitoring side. These four elements combine medical information about patients, information about their 

locations, and data about the medical staff. The system utilizes a mobile application for patients, which can be 

downloaded after registration in the emergency room. The app allows patients to access their medical records 



Real-Time Human Activity Recognition and Indoor Positioning System for the Elderly 

 Page 19 of 229 

 

and information about their doctors and nurses from the system server, which is displayed on the patient's 

mobile phone. Additionally, the app automatically detects and selects the nearest iBeacon based on Bluetooth 

signals received in the background. The information about the selected iBeacon is then uploaded to the system 

server, and all data is transmitted securely through the HTTPS protocol. The server-side application is 

responsible for managing data storage, retrieval, and mapping. It serves as a connection between the patient 

and monitoring sides and maps the estimated nearest beacons sent from the patient side to the corresponding 

locations. The process of identifying locations is carried out on the server side. The server stores a mapping 

table of beacons and locations for the purpose of determining the actual locations. The final component is the 

monitoring side, which allows medical staff to view the location information of patients through a web browser 

or mobile device. The location classification accuracy of this positioning algorithm was 97.22% [69]. The 

estimated error for predictions is within 5 meters of the neighboring area, which was considered acceptable 

for tracking patient locations. 
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Chapter 3: Project Approach and Methodology 

1. Statement of Project 

We employ machine learning and deep learning to establish a framework for Human Activity Recognition 

(HAR) and Indoor Positioning System (IPS) for elderly people. First, to build the HAR part of the framework 

(Figure 5), sensor data of everyday activities like sitting, walking, lying down, going upstairs, and 

going downstairs will be collected into a dataset and used to train Deep Learning (DL) models. Artificial 

Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory Networks 

(LSTM) is the Deep Learning algorithms that will be used to recognize human activities in this project. The 

wearable device sensors will be used to capture and store different measurements such as acceleration, angular 

velocity, pitch, roll, yaw, etc. The features will be obtained from the dataset, and the samples will be analyzed. 

Next, the distribution of the dataset will be analyzed and visualized. The data will then be split into two sub-

datasets, with 80% as training data and 20% as testing data. 

 

Figure 5: HAR overview 

In addition, an Indoor Positioning System (IPS) part of the framework (Figure 6) will be designed to find the 

position of the monitored elderly person inside a building using Bluetooth Low Energy (BLE) beacons, ESP32 

detectors, and Machine Learning models. The BLE signals emitted from the device worn by the monitored 

person are detected by the ESP32 BLE receivers located inside the building, which measure the Received 

Signal Strength Indicator (RSSI) of the BLE beacon and send the data to the server. Finally, a Python script 

will be fetching the most recent measurements (RSSI values) from the ESP32 detectors and then predict the 

location of the person using trained machine-learning models.  
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Figure 6: IPS overview 

The training environment used in this work is the Google Compute Engine backend (GPU) available through 

Google Colab. The hardware specifications of the training environment are shown in Table 1. 

Table 1: Training environment 

Parameter Specification 

CPU Model Name Intel(R) Xeon(R) 

CPU Freq. 2.30GHz 

No. CPU Cores 2 

CPU Family Haswell 

Available RAM 12GB 

Disk Space 25GB 

GPU Nvidia K80 

GPU Memory 12GB 

GPU Memory Clock 0.82GHz 

Performance 4.1 TFLOPS 

Support Mixed Precision No 

GPU Release Year 2014 
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2. Detailed Project Approach and Methodology  

A. Human Activity Recognition 

The critical building blocks for human activity recognition are shown in the figure below. Raw data from the 

wearable device will be gathered, and different cleaning and preprocessing techniques will be applied to the 

dataset. Following that, features from the dataset will be extracted, and the model will be trained using those 

features. Human activity will be recognized in the final step. The building blocks of the human activity 

recognition process are illustrated in Figure 7. 

 

 

Figure 7: HAR training phase (top) and testing phase (bottom) 

i. Hardware Components 

a) Wearable Device 

The wearable device chosen in this project is the Apple Watch Series 4 smartwatch. The Apple Watch Series 

4 smartwatch is a smartwatch developed by Apple Inc. It was announced on September 12, 2018, and was 

released on September 21, 2018. It features a larger display, an electrical heart sensor, and improved health-

tracking capabilities. It runs on watchOS 9. The Apple Watch Series 4 has a Retina display with Force Touch 

technology, which allows the watch to distinguish between a tap and a press. The watch also has several 

features for communication, including the ability to make and receive phone calls, send and receive text 

messages, and send and receive digital touch [80]. 

The Apple Watch Series 4 (Figure 8) uses several communication protocols to facilitate communication with 

other devices. The watch uses Bluetooth to connect to other devices, such as the iPhone, for communication 

and data transfer. This allows the watch to receive notifications, make phone calls, and send messages. The 

watch also uses Wi-Fi to connect to the internet, allowing it to access online services and communicate with 

other devices. The watch has an integrated GPS sensor, which allows it to track location and provide location-

based services. Some models of the watch also have cellular connectivity, which allows them to make and 
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receive calls and texts, even when the iPhone is not nearby. All these protocols work together to allow the 

Apple Watch Series 4 to provide a wide range of features and services to the user. 

 

Figure 8: Apple Watch Series 4 

The following are the hardware technical specifications of the Apple Watch Series 4 smartwatch [80]: 

• Chip: S4 SiP with 64-bit dual-core processor; W3 wireless chip 

• Connectivity: LTE and UMTS2, GPS, Wi-Fi 802.11b/g/n 2.4GHz, and Bluetooth 5.0 

• Memory: 16 GB storage memory, 1 GB RAM 

• Battery: Built-in rechargeable lithium-ion 292 mAh (1.12 Wh) battery (Up to 18 hours) 

• Operating System: watchOS 9.1 

ii. Data Collection 

The sensor data is collected from the smartwatch using the SensorLog app. SensorLog is a tool that allows 

developers to access sensor data from iPhone, iPad, and Apple Watch devices. This data can be saved as a file 

in either CSV or JSON format, or it can be sent as an HTTP request. The purpose of collecting and reading 

sensor data through SensorLog is to make it visible and accessible to the user for their own usage. The provider 

of SensorLog does not use the data collected through the tool for any other purposes than providing it to the 

user. Any data that is recorded by SensorLog on the device will be stored until the user chooses to delete it, 

either through SensorLog's own log file deletion function or by uninstalling the app from their device. Data 

that is sent via HTTP to a server specified by the user is under the control and responsibility of the user [81]. 

The first logging option allows for simultaneous logging of all selectable sensor data in the background with 

a maximum frequency of 50Hz. Additionally, individual sensors can be logged at a higher frequency of up to 

100Hz. This option also supports both streaming and HTTP requests, but only in client mode. The second 

logging option is for logging duration greater than 1 hour, in which case the background logging only supports 

accelerometer data with a maximum frequency of 50Hz. However, in the foreground, all sensor data can be 

logged with a frequency of up to 100Hz. Streaming and HTTP requests are only available when the app is in 

the foreground. Data can also be transmitted via HTTP(S) GET/POST request to a REST API in JSON format 

(POST) or form-URL encoded (POST and GET) with a maximum frequency of 10Hz [81]. The app was 
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configured to transmit sensor data via HTTPS request to a REST API in JSON format (POST) at the maximum 

frequency of 10Hz to the following Firebase Realtime Database REST endpoint URL: https://sensorlog-6c0d5-

default-rtdb.europe-west1.firebasedatabase.app/readings.json  

  

(a)    (b) 

  

(c)    (d) 

Figure 9: (a) Upload rate selection. (b) Selection of REST endpoint, HTTP(S) request method, and format. (c) SensorLog interface 
before the start of logging. (d) Logging/HTTP(S) requests in progress. 

Depending on how the user has configured the app, SensorLog will collect certain data from the connected 

Apple Watch and store it on the device, and/or distribute it to a user-specified server via HTTP request as 

configured by the user [81]. The specific data that SensorLog was configured to collect and subsequently store 

or send via HTTP requests are listed below. The aforementioned steps for configuring SensorLog to collect 

sensor data from the smartwatch are depicted in Figure 9. The following is a list of all the sensor data collected 

from the smartwatch. Note that the pedometer data was dropped later due to causing the DL models to perform 

poorly, which will be discussed in detail in the Data Cleaning section of this paper.  

• General Logging Info: 

o loggingTime(txt) 

• Raw Accelerometer Data: 

o accelerometerAccelerationX(G) 

o accelerometerAccelerationY(G) 

o accelerometerAccelerationZ(G) 

https://sensorlog-6c0d5-default-rtdb.europe-west1.firebasedatabase.app/readings.json
https://sensorlog-6c0d5-default-rtdb.europe-west1.firebasedatabase.app/readings.json
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• Unbiased Data User Acceleration, Gravity, Heading, Rotation: 

o motionYaw(rad) 

o motionRoll(rad) 

o motionPitch(rad) 

o motionRotationRateX(rad/s) 

o motionRotationRateY(rad/s) 

o motionRotationRateZ(rad/s) 

o motionUserAccelerationX(G) 

o motionUserAccelerationY(G) 

o motionUserAccelerationZ(G) 

o motionQuaternionX(R) 

o motionQuaternionY(R) 

o motionQuaternionZ(R) 

o motionQuaternionW(R) 

o motionGravityX(G) 

o motionGravityY(G) 

o motionGravityZ(G) 

• Steps, Distance, Pace, Cadence, Floors: 

o pedometerNumberofSteps(N) 

o pedometerAverageActivePace(s/m) 

o pedometerCurrentPace(s/m) 

o pedometerCurrentCadence(steps/s) 

o pedometerDistance(m) 

o pedometerFloorAscended(N) 

o pedometerFloorDescended(N) 

• Device ID (set by user): 

o deviceID(txt) 

• Data Labelling: 

o label(N) 
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Figure 10: Data labeling using SensorLog 

This data is collected from four subjects as they performed some day-to-day human activities such as —

 walking, sitting, laying down, ascending, and descending stairs for a specific period of time. In all cases, data 

is collected at a frequency of 10 samples per second, which is one record every 100 milliseconds (10Hz). 

Labeling training data using SensorLog (Figure 10) was determined to be as follows: 0 for ‘Laying down’, 1 

for ‘Sitting’, 3 for ‘Walking’, 4 for ‘Upstairs’, and 5 for ‘Downstairs’, with the label “2” left unused. Figure 

11 shows the Pandas dataframe of all collected data before cleaning and preprocessing. 

 

Figure 11: Dataset info before data cleaning 

The dataset has 39 columns – including ‘label’ and ‘timestamp’. ‘label’ is the name of the activity, ‘timestamp’ 

is the Unix timestamp, and the rest are the sensor readings and related information of a given sensor at a given 

instance of time. Our target variable is ‘label’ which will be predicted by our deep learning models for new 

data. 
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iii. Data Cleaning 

First, unnecessary columns that are irrelevant to the activity recognition task are dropped from the dataset. 

This reduces the number of columns in the dataset from 39 to 27 columns (Figure 12). The timestamp datatype 

is then changed from a string to a DateTime object. 

 

Figure 12: Dataset info after dropping unnecessary columns 

Next, we use the dropna() function in Pandas to remove the missing values. The following is the function 

syntax [82]: 

dataframe.dropna(axis, how, thresh, subset, inplace) 

• axis – 0 or ‘index’, 1 or ‘column’ (default 0) – This makes it easier to identify and then delete the rows 

or columns that contain missing values. If a value of 1 is supplied to this parameter instead of the usual 

value of 0, which is missing values from rows are removed, then missing values from columns are 

also removed. 

• how – ‘any’ or ‘all’ (default – any) – This option provides criteria for the removal of missing values. 

If "any" is supplied, a row will be eliminated even if just one value is missing, but if "all," all values 

must be missing for a row or column to be erased. 

• thresh – int(optional) – Thresh parameter is used to specify the count of Non-NA values that should 

be present in the passed dataframe. 

• subset – array-like(optional) – This subset is a part of the dataframe considered along the other axis 

from where null values are removed. 

• inplace – boolean – The inplace determines whether or not the operations carried out on the dataframe 

are permanent. The modifications brought about by the operations become permanent if true is 
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transmitted to it; otherwise, they do not. False is the default setting. The final output will be a dataframe 

with NA values removed. 

Using this, we identify and remove 167 rows with missing values. Next, we use Pandas’ drop_duplicates() 

function to remove duplicate rows from the dataframe. The following is the function syntax [83]: 

dataframe.drop_duplicates(subset, keep, inplace) 

• keep: {first, last, False}, default ‘first’ – Which duplicates should be maintained in the dataframe is 

decided by this. If ‘first’ is given, then any duplicates aside from the first are removed. Similarly, if 

‘last’ is given, all duplicates aside from the last are removed. All duplicates are removed if false is 

given. The default value of ‘first’ is used in this work. 

747 duplicated rows are identified and removed. Afterward, Panda’s nunique() function is used to count the 

number of unique entries in each column of the dataframe [84]. It is useful in situations where the number of 

categories is unknown beforehand. It does not take any parameters and returns the number of unique entries 

in the requested columns as shown in Figure 13. 

 

Figure 13: Number of unique values of each column in the dataset 

Subsequently, we apply a selection-based approach for dimensionality reduction, which involves removing 

certain features or attributes from the dataset. The choice of which attributes to eliminate can be determined 

through experimentation and evaluating the model's performance or by examining the characteristics of the 

attributes such as the number of unique values, quality of measurements, or percentage of missing values, or 

through statistical tests that measure correlation. Using Panda’s nunique() function, it was found that the 

pedometer sensor values change at a much slower frequency than the other sensor values, and hence have a 

relatively low number of unique values. When a feature has mostly the same value or has very little variation, 

it can make it difficult for the model to learn from it. Thus, we decide to remove all pedometer features, 
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reducing the dimensionality from 25 features to 19 features. Figure 14 shows the 19 features (index 0 to 18) 

and the target variable ‘label’, as well as the size of the dataset. 

 

Figure 14: Dataset info after data cleaning 

iv. Exploratory Data Analysis 

In this section, we explore the dataset after cleaning. Table 2 shows the number of samples collected for each 

activity. The graph (Figure 15) is a visualization of the table, showing the distribution of the samples across 

different activities. From the graph, it can be observed that there is a significant imbalance in the distribution 

of the class labels, with the majority of the samples being labeled as 'Sitting' and 'Laying Down'. Conversely, 

the activities 'Upstairs' and 'Downstairs' have the least representation in the dataset. 

 

Figure 15: Number of samples for each activity in the dataset 
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Table 2: Number of samples for each activity in the dataset 

Activity Number of samples 

Laying Down 201,521 

Sitting 183,940 

Walking 65,951 

Upstairs 32,362 

Downstairs 30,107 

 

 

 

 

Figure 16: Accelerometer sensors readings in the x, y, and z axes over time for each activity 

Figure 16 visualizes the signal values of the accelerometer sensor in the x, y, and z axes over time for each 

activity. It can be observed how the signals behave differently for each activity. For this visualization, a subset 
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of 200 samples was considered, which is equivalent to 20 seconds of activity (as the data was collected at a 

frequency of 10Hz). It is noticeable that the signal exhibits periodic behavior for activities such as 'Walking', 

'Upstairs', and 'Downstairs', while it shows very little movement for stationary activities like 'Sitting' and 

'Laying Down'. These signals are modeled as time-series data. 

A pair-plot is used to visualize the correlation of each feature pair in a dataset against the class distribution, 

with the identical feature pairs rendered for the diagonal plots which represent the class distribution for that 

pair. A pair plot helps us comprehend and rapidly analyze the correlation matrix (Pearson) of the dataset since 

it clearly illustrates the correlation of each feature pair. Plotting "pairwise relationships in a dataset" can be 

done using Seaborn’s pair plot function (seaborn.pairplot) [85]. In terms of level, Seaborn builds on Matplotlib 

and "provides a high-level interface for producing appealing and informative statistical visuals." To ensure 

that the class distribution makes sense in terms of correlation, the various feature pair plots are selected to be 

scatter plots. The histogram can effectively depict the density distribution of the classes, and thus is selected 

as the diagonal's plot type. A pair-plot of all the continuous data in the dataset is shown in Figure 17. 

The linear correlation between two characteristics is measured by the Pearson (product-moment) correlation 

coefficient. It is the proportion of x and y's covariance to the sum of their standard deviations. It's known as 

Pearson's r and is frequently represented by the letter r. the value can be mathematically expressed with this 

equation: 

𝑟 =
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

√∑(𝑥𝑖 − 𝑥̅)2∑(𝑦𝑖 − 𝑦̅)2
 

(1) 

Where, 𝑟 is Pearson’s Correlation Coefficient, 𝑥𝑖 and 𝑦𝑖 are variables samples, 𝑥̅ is the mean of values in the 

x variable, and 𝑦̅ is the mean of values in the y variable. The following details concerning the Pearson 

correlation coefficient are crucial [85]: 

• The Pearson correlation coefficient is a real number that can be any value between −1 ≤ 𝑟 ≤ 1, 

inclusive. 

• A positive correlation between x and y is shown by a value of r > 0. When r is less than zero, there is 

a negative correlation between x and y. 

• The scenario where x and y have a perfect positive linear connection is represented by the maximum 

value of r = 1. To put it another way, greater x values match larger y values and vice versa. Likewise, 

the scenario when there is a perfect negative linear connection between x and y corresponds to the 

smallest value of r = - 1. In other words, lower y values and greater x values are equivalent. 

• The circumstance when x and y don't have a linear connection is represented by the value r = 0. 
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Figure 17: Pair plot of all continuous features in the dataset 

In essence, better correlation and a closer affinity to a linear function are indicated by a bigger absolute value 

of r. A weaker correlation is indicated by a lower absolute value of r. To determine the pairwise Pearson’s 

correlation coefficient of all columns in a dataframe, Pandas' dataframe.corr() function is used [85]. The 

function will disregard any columns with non-numeric data types [86]. Figure 18 is a heatmap of the pairwise 

correlation coefficients. The highest positive correlation coefficients can be seen in dark red, while the highest 

negative correlation coefficients are in dark blue. The correlation coefficients that are close to ‘0’ can be seen 

in light gray color.  
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Figure 18: Heatmap of the pairwise correlation coefficients of dataset features 

To understand the heatmap better, the absolute values of all the correlation coefficients are sorted to display 

the pairs of features with the highest correlation, whether it is a negative correlation or a positive one. Figure 

19 shows the 20 pairs with the highest absolute values of correlation coefficients, sorted in ascending order. It 

is found that the pedometer features, which were decided to be removed earlier due to low variation, were all 

redundant due to high values of correlation among them. As for motionGravityX, motionGravityY, and 

motionGravityZ features, they expectedly show high absolute correlation with accelerometerAccelerationX, 

accelerometerAccelerationY, and accelerometerAccelerationZ, respectively. Normally, if two variables are 

highly correlated, keeping only one will help reduce dimensionality without much loss of information [87]. 

However, further analysis based on the models’ performance during the experimentation phase, as well as the 

feature importance analysis that will be discussed in this paper, showed that these variables are significant to 

the models’ learning, and dropping them results in marginally poorer performance. Therefore, 

motionGravityX, motionGravityY, and motionGravityZ were kept as features in the dataset.  
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Figure 19: Pairs of features with the highest absolute correlation coefficients in ascending order 

v. Data Pre-processing 

a) Windowing (Segmenting) 

In this part, generate fixed-length sequences or windows are generated using the collected samples. Each 

sequence that is generated will contain 200 records, equivalent to 20 seconds of activity (as the data collection 

frequency is 10Hz). It is worth noting that the windows created have an 80% overlap. This is done because the 

activity is continuous and having an overlap in the windows ensures that each subsequent window carries some 

information from the previous window. Table 3 shows the number of generated sequences for each activity in 

the dataset. 

Table 3: Number of segments for each activity 

Activity Segment Count 

Laying Down 5,038 

Sitting 4,597 

Walking 1,648 

Upstairs 811 

Downstairs 749 
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b) Data Splitting 

Data splitting is a technique used to divide a dataset into two separate groups: one for training and the other 

for testing. The purpose of this method is to evaluate the performance of statistical and machine-learning 

models [88]. The most commonly used data splitting method is random subsampling, where a random portion 

of the data is selected for testing, and the remaining data is used for training. The proportion of data used for 

training and testing can vary, with 80:20 being a common ratio, but other ratios such as 70:30, 60:40, and even 

50:50 are also used in practice [88]. There is no clear guidance on the best ratio of training and testing data for 

a given dataset. In this work, we use the 80:20 random subsampling ratio, where 20% of the data will be used 

for testing the performance of the model. The 80% portion of the data is further split into an 80% training set 

and a 20% validation set. Thus, the original dataset was partitioned into three separate sets: the training set, 

validation set, and test set. The proportion of data allotted to each set was 64%, 16%, and 20%, respectively. 

The validation set is used in evaluating the performance of the model during the training process, whereas the 

test set was used to derive all the final results, which are presented in Chapter 4. 

c) Data Standardization  

Standardizing a dataset is rescaling the distribution of values to make the mean of observed values 0 and the 

standard deviation 1. This can be compared to centering the data or removing the mean value. When the data 

comprises input values with different scales, standardization can be helpful and even necessary in some 

machine learning and deep learning methods. Standardization is based on the presumption that the data fits a 

bell-shaped Gaussian distribution with a consistent mean and standard deviation. The statistical mean and 

standard deviation of the attribute values are calculated, the mean is subtracted from each value, and the result 

is divided by the standard deviation. The output of this procedure, known as standardizing a statistical variable, 

is a set of values with a mean of 0 and a standard deviation of 1 [89]. It is a must to be able to precisely estimate 

the mean and standard deviation of observable quantities in order to standardize. Centering is the process of 

removing the mean from the data, while scaling is the division of the standard deviation. Thus, the technique 

is occasionally referred to as "center scaling". The standard score of sample 𝑥 is calculated as [90]: 

𝑧 =
𝑥 −  𝑢

𝑠
 

(2) 

where 𝑢 is the mean of the training samples, and 𝑠 is the standard deviation of the training samples. The mean 

and standard deviation estimates of a dataset can be more robust to new data than the minimum and maximum 

values. Here, we standardize our dataset using the scikit-learn object StandardScaler [90]. By calculating the 

pertinent statistics on the samples in the training set, centering and scaling are applied independently to each 

feature. Then, for applying to new data using the “transform” function, the StandardScaler object containing 

the scaling parameters is stored as a .bin file. Figure 20 shows the distribution of each feature in the dataset 
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before applying data standardization, and after where their distributions represent bell-shaped Gaussian 

distributions. 

 

 

Figure 20: Distribution of each feature in the dataset before applying data standardization (top) and after (bottom) 
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vi. Deep Learning Models 

a) Artificial Neural Network (ANN) 

 

Figure 21: ANN structure 

An Artificial Neural Network (ANN) is a computational model inspired by the structure and functions of the 

human brain [91]. ANNs are a type of machine learning algorithm that consists of interconnected nodes, known 

as artificial neurons, which are arranged into layers. These layers receive inputs and apply transformations to 

produce outputs. The objective of an ANN is to learn and generalize patterns in data and use this information 

to make predictions or classify new inputs. One can think of a single perceptron (or neuron) as a Logistic 

Regression. An artificial neural network, or ANN, is made up of several perceptrons and neurons at each layer. 

Because inputs are exclusively processed in the forward direction, ANN is sometimes referred to as a feed-

forward neural network – information travels from one layer to another without touching a node twice. The 

neurons in an ANN are connected to each other through directed edges, or weights, which represent the 

strength of the connection between two neurons. The outputs of neurons are passed from one layer to another, 

and the values of the weights are updated during training to minimize an objective function, such as the Mean 

Squared Error (MSE). The ANN is trained on a large dataset and the weights are updated in such a way that 

the ANN can make accurate predictions for new inputs. 

ANN is composed of three layers: input, hidden layer, and output layer [92]. The structure of an ANN is shown 

in Figure 21 [93]. Inputs are received by the input layer, processed by the hidden layer, and then the output 

layer generates the output. In essence, each layer makes an effort to learn specific weights. A feedforward 

network consists of three key components: the input layer, hidden layers, and the output layer. The input layer 

receives the inputs of the problem, while the hidden layers determine and represent the relationship between 

the inputs and outputs through the use of synaptic weights. The output layer then emits the solutions to the 

problem. The architecture of a feedforward network is modeled with three basic elements: synaptic weights, 

which characterize the set of synapses, a linear combiner for summing input signals, and an activation function 

for limiting the amplitude of the neuron's output to a finite value. The activation function's input can be 

amplified by incorporating a bias term [92]. 
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Figure 22: Artificial neuron model 

In an artificial neuron, the weight serves as the numerical representation of a synapse. Negative weights 

indicate inhibitory connections while positive weights denote excitatory connections. The activity of the 

neuron cell is represented by the sum of all inputs, which are modified by the corresponding weights. This 

resulting computation is referred to as a linear combination. An activation function then regulates the 

magnitude of the output. The activation function defines the range in which the output is acceptable, which is 

typically between 0 and 1, or -1 and 1. This process is described in Figure 22 [94]. 

 

Figure 23: Proposed ANN model architecture 

The proposed ANN model, shown in Figure 23, consists of a dense (fully connected) layer, a dropout layer, 

and an output layer. The complexity of the model is determined by the number of neurons in each layer. If 

there are fewer neurons, the network lacks the ability to properly train and process information, resulting in a 

low recognition rate. However, as the number of neurons increases, the recognition rate improves but the 

training ability of the network decreases. In the proposed ANN model, the number of neurons was tested 

between 32 and 128, and the recognition rate and time were evaluated. It was found that the recognition rate 

was low when using 32 neurons but increased when using 128 neurons. The recognition time also increased 

with the increase in the number of neurons. To prioritize recognition rate over recognition time, 128 neurons 



Real-Time Human Activity Recognition and Indoor Positioning System for the Elderly 

 Page 39 of 229 

 

were chosen for the dense layer. Due to its speed and computational efficiency, the activation function used 

for this layer is the ReLU activation function. 

Dropout is a regularization technique used to prevent overfitting in a network by randomly disconnecting input 

and recurrent connections to hidden units during training. This leads to a better model performance by reducing 

the reliance on specific connections. Dropout can also be applied to the input connections of the hidden nodes, 

meaning that for a certain probability, the input data to each hidden layer will be ignored during node activation 

and weight updates. This can be done in TensorFlow by adding a dropout layer, with a range of 0 (no dropout) 

to 1 (no connection). A Dropout rate of 20% is often used as a balance between maintaining model accuracy 

and avoiding overfitting. In the proposed ANN model, the dropout rate is set to 0.20, which is the fraction of 

input units to be dropped. Figure 24 demonstrates the use of dropout in ANN [95]. 

 

Figure 24: Dropout in Neural Networks 

The final layer is the activation layer. Finally, the features are passed through a SoftMax activation function, 

which produces the activity features that are used for activity classification. Table 4 shows the ANN model 

summary. 

Table 4: Proposed ANN model summary 

Layer (Type) Output Shape Param # 

Dense (None, 128) 486,528 

Dropout (None, 128) 0 

Dense (None, 5) 645 

Total params 487,173 

Trainable params 487,173 

Non-trainable params 0 
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b) Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNN) play a significant role in computer vision and are characterized by 

their unique hidden layer structure. These hidden layers include Convolutional Layers, Pooling Layers, and 

Fully Connected Layers, where the convolution and pooling functions serve as activation functions, as shown 

in Figure 25 [96]. 

 

Figure 25: CNN structure 

The primary computational responsibility in Convolutional Neural Networks (CNNs) lies with the 

Convolutional Layers (CONV layers), which are equipped with a set of filters (kernels) with adjustable 

weights. The depth of the filters and inputs is identical. Specifically, the forward propagation in a 1D CONV 

layer can be represented as follows [96]: 

𝑔𝑖 = 𝑓 [∑  

𝑁

𝑛=1

conv1𝐷(𝑤𝑖,𝑛, 𝑎𝑛) + 𝑏𝑖] 

(3) 

where 𝑔𝑖, is the calculation result of the ith filter; 𝑎 is the input data of size 1 × 𝑁𝑎 × 𝑁, 𝑤𝑖 is the weight 

matrix of the ith filter of size 1 × 𝑁𝑤 × 𝑁; 𝑏𝑖 is the bias of the ith filter and 𝑓 is the activation function. 

The pooling layers reduce the size of the feature maps obtained from the CONV layers, with Max pooling 

being the most frequently utilized approach, which is expressed as follows [96]: 

𝑝𝑖(𝑗) = max
(𝑗−1)×𝑚<𝑘≤𝑗×𝑚

 (𝑎𝑖(𝑘)) 

(4) 

where 𝑝𝑖(𝑗) is the jth element of the ith feature map output by the pooling layer, and 𝑎𝑖(𝑘) is the kth element 

of the ith feature map input into the pooling layer. The size of the pooling layer filter is 1 × 𝑚. The final 

classification of the feature maps extracted by the Convolutional and Pooling Layers is performed by the Fully 

Connected Layers to produce the original output data. The normalization of the output data is carried out using 



Real-Time Human Activity Recognition and Indoor Positioning System for the Elderly 

 Page 41 of 229 

 

the SoftMax function, which calculates the probability distribution of the input samples across different 

categories. 

Convolutional Neural Network (CNN) models were initially designed for image classification tasks, where the 

model learns to extract features from two-dimensional inputs. This same concept can also be applied to one-

dimensional sequences of data, such as acceleration and gyroscopic data for human activity recognition [97], 

[98]. In this process, the model learns to extract relevant features from sequences of observations and map 

these internal features to different types of activities. One of the key advantages of using CNNs for sequence 

classification is that they can directly learn from raw time series data, without requiring domain expertise to 

manually engineer input features. Ideally, this approach leads to a model that has comparable performance to 

models fitted with engineered features. In Conv1D, the kernel slides along a single dimension, making it 

suitable for activity recognition tasks from accelerometer data. In this type of data, there are two dimensions - 

time steps and values of acceleration in three axes. Figure 26 illustrates the movement of the kernel along the 

time axis in accelerometer data. Each row represents the time series acceleration for a particular axis. The 

kernel can only move in one direction, along the time axis [99]. 

 

Figure 26: Movement of the kernel along the time axis 

In the proposed CNN model, two 1D Convolutional Neural Network (CNN) layers are utilized, followed by a 

dropout layer for regularization and a pooling layer. It is a common practice to utilize two CNN layers in order 

to increase the chances of the model effectively learning features from the input data. Since CNNs have a 

tendency to learn quickly, a 50% dropout layer is implemented to slow down the learning process, ultimately 

leading to a better final model. The pooling layer consolidates the learned features by reducing their size to 

half of the original size, thereby retaining only the most crucial elements. The learned features are then 

flattened into a single vector, which is passed through a fully connected layer before reaching the output layer. 

The fully connected layer serves as an intermediary between the learned features and the output, allowing for 

the interpretation of the learned features before making a prediction. The architecture of the model is shown 

in Figure 27. 
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Figure 27: Proposed CNN model architecture 

For this model, a standard configuration of 64 parallel feature maps and a kernel size of 3 is used. The feature 

maps represent the number of times the input is interpreted, whereas the kernel size refers to the number of 

input time steps considered as the input sequence is processed onto the feature maps. The optimization of the 

network is achieved through the use of the efficient Adam version of Stochastic Gradient Descent. Given the 

nature of the multi-class classification problem, the categorical cross-entropy loss function is employed. 

Additionally, the ReLU activation function is used here in the two Conv1D layers as well as the first dense 

layer due to its speed and computational efficiency. The model is trained for a fixed number of 200 epochs 

with Early Stopping, using a batch size of 64 samples, where 64 windows of data are exposed to the model 

before the weights are updated. Table 5 shows the CNN model summary. 
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Table 5: Proposed CNN model summary 

Layer (Type) Output Shape Param # 

Conv1D (None, 198, 64) 3,712 

Conv1D (None, 196, 64) 12,352 

Dropout (None, 196, 64) 0 

MaxPooling1D (None, 98, 64) 0 

Flatten (None, 6272) 0 

Dense (None, 128) 802,944 

Dense (None, 5) 645 

Total params 819,653 

Trainable params 819,653 

Non-trainable params 0 

 

c) Long Short-Term Memory (LSTM) 

Recurrent neural networks, or RNNs, have gained significant popularity in various fields of research that 

involve sequential data, such as text, audio, and video. However, traditional RNNs that use sigma or tanh cells 

have a limitation in their ability to effectively learn and retain important information from input data when 

there is a large gap in the input sequence. To address this issue, researchers introduced gate functions into the 

cell structure of RNNs, resulting in the development of the long short-term memory (LSTM) model. The 

LSTM model is able to handle the problem of long-term dependencies in input sequences much more 

effectively than traditional RNNs. Since its introduction, the LSTM has been widely used in deep learning 

research and has been responsible for achieving many exciting results in the field [100]. As a result, the LSTM 

has become a central focus in the field of deep learning. 

Recurrent neural networks have units or blocks called long short-term memory (LSTM). Certain artificial 

memory techniques are made to be used by recurrent neural networks, which can aid these artificial intelligence 

programs in more accurately mimicking human reasoning. Long short-term memory blocks are used by the 

recurrent neural network to offer context for how the program receives inputs and produces outputs. A complex 

structure, the long short-term memory block has several parts, including weighted inputs, activation functions, 

inputs from earlier blocks, and final outputs. Because the algorithm uses a structure built on short-term memory 

processes to build longer-term memory, the unit is known as a long short-term memory block [100].  
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Figure 28: Standard recurrent sigma cell schematic 

Recurrent Neural Networks (RNNs) are a type of neural network that incorporate feedback connections, 

allowing for the states of the recurrent layers or hidden layers to be affected by both past states and current 

input. These recurrent layers can be organized in different architectures, which is what primarily distinguishes 

one RNN from another. The types of recurrent cells and inner connections used in the network can also impact 

its capacity and capabilities. Figure 28 shows the standard recurrent sigma cell schematic [100]. The standard 

recurrent sigma cell can be mathematically expressed as follows:   

ℎ𝑡 = 𝜎(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏)

𝑦𝑡 = ℎ𝑡
 

(5) 

where 𝑥𝑡, ℎ𝑡, and 𝑦𝑡denote the input, the recurrent information, and the output of the cell at time t, respectively; 

𝑊ℎ and 𝑊𝑥 are the weights; and 𝑏 is the bias.  

Standard recurrent cells, such as sigma cells and tanh cells, are often used in RNNs and have had some success 

in certain problems. However, RNNs that only utilize standard recurrent cells struggle with handling long-

term dependencies. As the gap between related inputs increases, it becomes increasingly difficult for the 

network to learn the connection information. Research by Hochreiter [101] and Bengio et al. [102] has 

identified that the fundamental problem with long-term dependencies in RNNs is that error signals flowing 

backward in time tend to either become too large or disappear entirely. Hochreiter and Schmidhuber [101] 

introduced a solution in 1997 to address the issue of "long-term dependencies" in recurrent cells by 

incorporating a "gate" within the cell, known as the LSTM cell. This improved the ability of the standard 

recurrent cell to retain information over time. Since this initial proposal, many researchers have further 

developed and popularized the LSTM cell, including modifications such as LSTM without a forget gate, LSTM 

with a forget gate, and LSTM with a peephole connection. Typically, when referring to an LSTM cell, it is 

assumed to include a forget gate [100].  
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Figure 29: Schematic of LSTM cell incorporating a forget gate 

In 2000, Gers, Schmidhuber, and Cummins made a modification to the original Long Short-Term Memory 

(LSTM) by incorporating a forget gate into the LSTM cell [103]. Figure 29 illustrates the internal connections 

of this modified LSTM cell, and from these connections, the LSTM cell can be mathematically represented as 

follows [100]: 

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ 𝑐̃𝑡 

ℎ𝑡 = 𝑜𝑡 ⋅ tanh (𝑐𝑡) 

(6) 

where 𝑐𝑡 denotes the cell state of LSTM, and the operator ‘·’ denotes the pointwise multiplication of two 

vectors.  

The input gate in an LSTM cell is responsible for determining which of the input values should be used to 

update the memory. This is accomplished through the use of two different functions: the sigmoid function and 

the tanh function. The sigmoid function is used to determine whether to allow a value of 0 or 1 through the 

gate, while the tanh function is used to assign a weight to the data provided. This weight is then used to 

determine the importance of the data on a scale of -1 to 1. The following are the mathematical expressions of 

the input gate [100]: 

𝑖𝑡 = 𝜎(𝑊𝑖ℎℎ𝑡−1 + 𝑊𝑖𝑥𝑥𝑡 + 𝑏𝑖) 

𝑐̃𝑡 = tanh (𝑊𝑐̃ℎℎ𝑡−1 + 𝑊𝑐̃𝑥𝑥𝑡 + 𝑏𝑐̃) 

(7) 

where 𝑊𝑖, 𝑊𝑐̃, and 𝑊𝑜 are the weights. 
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The forget gate, on the other hand, is responsible for finding the details that should be removed from the block. 

This is determined by a sigmoid function, which looks at the preceding state (ℎ𝑡−1) and the content input (𝑥𝑡) 

for each number in the cell state (𝑐𝑡−1). The following are the mathematical expression of the forget gate [100]: 

𝑓𝑡 = 𝜎(𝑊𝑓ℎℎ𝑡−1 + 𝑊𝑓𝑥𝑥𝑡 + 𝑏𝑓) 

(8) 

The forget gate plays a crucial role in the LSTM cell by determining which information will be discarded from 

the cell state. When the value of the forget gate (𝑓𝑡) is 1, it keeps the information, while a value of 0 means it 

discards all the information. Research by Jozefowicz et al. in 2015 [104] found that increasing the bias of the 

forget gate (𝑏𝑓) often leads to improved performance of the LSTM network. 

Finally, the output gate is used to determine the output of the block. This is done by using both the block's 

input and memory to make this determination. The sigmoid function is used to determine whether to allow a 

value of 0 or 1 through the gate, while the tanh function is used to assign a weight to the values provided. This 

weight is then used to determine the relevance of the values on a scale of -1 to 1 and is multiplied by the 

sigmoid output to produce the final output. The following is the mathematical expression of the output gate 

[100]: 

𝑜𝑡 = 𝜎(𝑊𝑜ℎℎ𝑡−1 + 𝑊𝑜𝑥𝑥𝑡 + 𝑏𝑜) 

(9) 

LSTMs are designed to work with sequence data. By adding layers to an LSTM, it allows for the greater 

abstraction of input observations over time, meaning the input data can be broken down into chunks or 

represented at different time scales. Stacked LSTMs, also known as deep LSTMs, were first introduced in a 

study on speech recognition and were able to beat a benchmark on a difficult standard problem [105]. This 

technique is now commonly used for tackling complex sequence prediction issues. In the aforementioned 

study, it was found that the depth of the network was more important than the number of memory cells in a 

given layer for achieving good results [105]. A stacked LSTM architecture is made up of multiple LSTM 

layers, with each layer providing a sequence output rather than a single value output to the layer below it. To 

stack LSTM layers, the configuration of the prior layer must be altered to output the same shape of the input 

array as input for the subsequent layer. This can be achieved by setting the return_sequences argument on the 

layer to "True" instead of the default "False". Our proposed LSTM model (Figure 30) consists of two LSTM 

layers. The first LSTM layer provides a sequence output that is fed as input to the second LSTM layer. The 

second LSTM layer produces an array of data that includes information about time and activity. This array is 

then passed through a fully connected layer, which helps to identify global activity characteristics.  
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Figure 30: Proposed LSTM model architecture 

As mentioned earlier, the complexity of the model is determined by the number of neurons in each layer. In 

the proposed LSTM model, the number of neurons was tested between 32 and 128, and the recognition rate 

and time were evaluated. To prioritize the recognition rate without significantly increasing recognition time, 

128 neurons were chosen for the first LSTM layer and 32 for the second LSTM layer. Dropout, as mentioned 

earlier, is a regularization technique used to prevent overfitting in a network by randomly disconnecting input 

and recurrent connections to LSTM units during training. It is recommended to add a Dropout layer in 

combination with each LSTM layer to prevent overfitting. In this work, the dropout rate for each of the two 

LSTM layers is set to 0.20, which is the fraction of input units to be dropped.  

Table 6: Proposed LSTM model summary 

Layer (Type) Output Shape Param # 

LSTM (None, 200, 128) 75,776 

LSTM (None, 32) 20,608 

Dense (None, 64) 2,112 

Dense (None, 5)                  325 

Total params 98,821 

Trainable params 98,821 

Non-trainable params 0 
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After the LSTM layers have processed the input data and made predictions toward the desired output, the 

shape of the output needs to be reduced to match the desired output. The final layer that is added is the 

activation layer. This layer can technically be included in the dense layer, but there is a benefit to keeping them 

separate. In some cases, it may be useful to retrieve the reduced output of the density layer of the model. The 

dense layer (fully connected layer) is set to have 64 neurons with ReLU activation. Finally, the features are 

passed through a SoftMax activation function, which produces the activity features that are used for activity 

classification. Table 6 shows the LSTM model summary.  

d) CNN-Long Short-Term Memory (CNN-LSTM) 

The CNN LSTM is a specialized version of the LSTM architecture that is specifically designed to handle 

sequence prediction problems with inputs that have a spatial structure, such as images or videos. This is in 

contrast to the standard LSTM which is not well-suited for this type of input. The CNN LSTM architecture 

combines the features of both CNN and LSTM, using CNN layers to extract features from input data, and 

LSTMs to handle sequence prediction. This architecture is specifically designed to handle visual time series 

prediction problems, such as generating textual descriptions of activities shown in a sequence of images or 

videos. CNN LSTMs are well suited for activity recognition and other vision tasks that involve sequential 

inputs and outputs, as they are deep both spatially and temporally, and can be applied to a wide range of 

problems [106]. 

 

Figure 31: CNN-LSTM architecture 

The CNN LSTM architecture, also known as the LRCN model – short for Long-term Recurrent Convolutional 

Network – uses a CNN as a front end to an LSTM. A CNN-LSTM architecture can be created by adding CNN 

layers at the beginning, followed by LSTM layers, and a Dense layer at the output, as shown in Figure 31. This 

architecture can be thought of as consisting of two separate models: the CNN Model, which extracts features 

from the input, and the LSTM Model, which interprets these features across time steps [107].  
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In a CNN, features are extracted from the input signal through the use of convolution operations performed on 

the signal and kernels. Activation functions are used to detect features captured by the kernels, and ReLU is a 

common choice to neutralize negative values to zero. The pooling layer receives local characteristics from the 

convolution layer, performs a local sampling operation, and reduces the size of the network. Together, the 

pooling and convolution layers create a deep structure that can automatically extract important information 

from the input signal, such as activity data. An LSTM layer is a type of recurrent neural network that has 

feedback connections, called cells, which can remember information from previous time intervals in a 

sequence. It has three gates, input, output, and forget gate, which control the flow of information in and out of 

the cell. This type of layer is often combined with a CNN to improve the accuracy of recognizing transition 

activities [107]. To prevent the rapid change of information, the training speed needs to be decreased, which 

can be achieved by using a learning rate. The features obtained are then presented to the SoftMax activation 

function to obtain the activity features for activity classification. The goal is to have the final output features 

that are robust and consistent, which allows for accurate activity classification [108]. 

 

Figure 32: Proposed CNN-LSTM model architecture 
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In the proposed CNN-LSTM model shown in Figure 32, a standard configuration of 64 parallel feature maps 

and a kernel size of 3 is used for the Conv1D layer. The convolution layer is followed by a pooling layer. The 

pooling layer consolidates the learned features by reducing their size to half of the original size. The pooling 

layer is followed by a 50% dropout layer. Next is the LSTM layer, which is set to have 64 neurons and a 20% 

dropout rate. The learned features are then flattened into a single vector, which is passed through a fully 

connected layer before reaching the output layer. The dense layer (fully connected layer) is set to have 128 

neurons with ReLU activation. Finally, the features are passed through a SoftMax activation function, which 

produces the activity features that are used for activity classification. Table 7 shows the CNN-LSTM model 

summary. 

Table 7: Proposed CNN-LSTM model summary 

Layer (Type) Output Shape Param # 

Conv1D (None, 198, 64) 3,712 

MaxPooling1D (None, 99, 64) 0 

Dropout (None, 99, 64) 0 

LSTM (None, 64) 33,024 

Flatten (None, 128) 0 

Dense (None, 128) 8,320 

Dense (None, 5) 645 

Total params 45,701 

Trainable params 45,701 

Non-trainable params 0 

 

vii. Hyperparameter Tuning 

a) Learning Rate 

The learning rate is a crucial hyperparameter that determines the magnitude of adjustments made to the model 

based on the estimated error during each weight update. The process of learning and training the deep learning 

model can be complex because the information at the input of each layer can change based on the parameters 

of the previous layer. To mitigate this issue, the training speed is decreased by adjusting the learning rate. The 

learning rate parameter determines the size of the steps taken by the model based on the estimated error of the 

model. Choosing a specific learning rate is crucial, as a value that is too low can cause the training process to 

take a long time, and a value that is too high can cause the model to learn in an unstable manner and converge 

too quickly to a suboptimal solution [109]. In this study, the learning rate for all models is set to 0.0001, 

prioritizing model learning over training time. 
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b) Batch Size 

The batch size is a variable that determines the number of training samples that will be processed before the 

model's internal parameters are updated during gradient descent. It determines how many training samples are 

used in each iteration. Due to a large amount of data, it is not computationally efficient to use all of the data in 

one go, so the data is divided into smaller groups called batches. In this work, the batch size was experimented 

with and a batch size of 64 was found to be optimal for all HAR models. 

c) Epochs 

The number of epochs refers to the number of times the entire training dataset is passed through during gradient 

descent. A single epoch refers to a complete iteration of the training dataset, providing each sample with an 

opportunity to update the internal model parameters. An epoch can consist of one or multiple batches, with the 

simplest example being the batch gradient descent learning algorithm, where one epoch consists of one batch. 

The number of epochs is usually large, ranging from hundreds to thousands, to allow the learning algorithm to 

continue until the error from the model has been significantly reduced. In literature, the number of epochs is 

set to values such as 10, 100, 500, 1000, and larger [110]. In this work, the number of epochs is set to 200 with 

each epoch consisting of 64 batches for all HAR models.  

Early Stopping 

The number of training epochs in a deep learning model can significantly impact the final outcome. Too many 

epochs can result in overfitting of the training data, while too few can result in an underfitting model. To 

address this issue, early stopping is a method that enables the specification of a large number of training epochs, 

with the ability to halt the training process once the model performance stops improving on a validation dataset. 

Keras supports early stopping through the use of the EarlyStopping callback [111]. This callback allows the 

user to monitor a specific performance measure and terminate training when a specified trigger is reached. The 

“monitor” argument is used to specify the performance metric to be monitored, with a default setting of 

‘val_loss’ for the loss on the validation dataset. The “mode” argument also needs to be specified, indicating 

whether the objective is to maximize or minimize the chosen performance measure. By default, the mode is 

set to ‘auto‘ to minimize loss or maximize accuracy. It is important to note that the first instance of no 

improvement in the model performance may not necessarily be the optimal time to stop training. In some 

cases, the model may temporarily worsen before significantly improving. To account for this, the “patience” 

argument can be set to specify the number of epochs to wait for improvement before stopping training [111]. 

In this work, the “patience” argument is set to 20 epochs. To determine the epoch at which training was 

stopped, the “verbose” argument is set to 1, which will print the epoch number once training is halted. 

d) Activation Functions 

ReLU 
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The activation function plays a crucial role in determining whether a neuron should be activated or not. It does 

this by taking the weighted sum of the inputs and adding bias to it. The main purpose of the activation function 

is to introduce non-linearity into the output of a neuron. This non-linearity allows the neural network to learn 

more complex and nuanced patterns in the data, making it more accurate in its predictions. The rectified linear 

activation function, also known as ReLU, is a commonly used function for hidden layers in deep neural 

networks. This function is popular because it is easy to implement and is effective in overcoming the 

limitations of other previously popular activation functions such as Sigmoid and Tanh. ReLU is less likely to 

experience issues such as "dead" or saturated units, and it is also less likely to encounter vanishing gradients, 

which can prevent deep models from being trained. The ReLU function is mathematically defined as [112]:  

 𝑦 = { 
max (0, 𝑥) if 𝑥 < 0

𝑥 if 𝑥 ≥ 0
 

(10) 

 

Figure 33: ReLU function graph (left) and its derivative (right) 

To introduce non-linearity, the ReLU function is divided into two linear halves (Figure 33). When a function's 

slope is not constant, it is considered non-linear. The ReLU function is non-linear at zero, but the slope is 

either 0 (for negative inputs) or 1 (for positive inputs). Since its derivative is zero for any negative input, the 

ReLU function is not differentiable. Additionally, the output of ReLU has no maximum value, which helps 

the Gradient Descent algorithm. It is noteworthy that such a basic function can perform so well in deep neural 

networks, in comparison to Sigmoid and Tanh [113]. In contrast to the tanh or sigmoid functions that require 

a costly exponential calculation, the ReLU function can be implemented by simply applying a threshold to the 

activation at zero. Therefore, it is computationally more efficient and faster to train models using the ReLU 

activation function [112]. This makes it a popular choice for deep neural network architectures, especially 

when dealing with large datasets or real-time applications. 

SoftMax 
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Another activation function used in this work is the SoftMax function. The SoftMax function is a function that 

converts a vector of K real numbers into a vector of K real numbers that add up to 1. The input values can 

range from positive, negative, zero, or greater than one, but the SoftMax function converts them into 

probabilities that fall between 0 and 1. When one of the inputs is small or negative, the SoftMax function turns 

it into a small probability, and when an input is large, it turns it into a large probability, yet it will always stay 

between 0 and 1 [114]. The SoftMax formula is as follows: 

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑  𝐾
𝑗=1 𝑒𝑧𝑗

 

(11) 

𝐾 is the number of classes in the multi-class classifier. The SoftMax function takes in an input vector composed 

of elements (𝑧0, ... 𝑧𝐾), where each 𝑧𝑖 value is an element of the input vector and can take on any real value, 

whether it be positive, negative, or zero. The standard exponential function 𝑒𝑧𝑖 is applied to each element of 

the input vector, resulting in positive values greater than 0, yet fixed in the range (0, 1) which is what is required 

for a probability. The normalization term, found in the denominator of the formula, ensures that all output 

values of the function will sum to 1 and be within the range of (0, 1), making it a valid probability distribution 

[114].  

The SoftMax function is also known as the softargmax function or multi-class logistic regression. This is 

because it is a generalization of logistic regression that can be used for multi-class classification and its formula 

is similar to the sigmoid function used in logistic regression [114]. However, it should be noted that the 

SoftMax function can only be used in a classifier when the classes are mutually exclusive. Many multi-layer 

neural networks have a final layer that outputs real-valued scores that are not scaled and may be difficult to 

work with. In such cases, the SoftMax function is very useful as it converts the scores into a normalized 

probability distribution that can be displayed to users or used as input for other systems [114]. It is therefore 

common, as done in this work, to include a SoftMax function as the last layer of a neural network. 

e) Loss Function 

Categorical Cross-Entropy 

Cross-entropy is a widely used loss function in machine learning. It is a measure taken from the field of 

information theory that builds upon the concept of entropy and calculates the difference between two 

probability distributions. It is closely related to, but different from, KL divergence, which calculates the 

relative entropy between two probability distributions. Cross-entropy, on the other hand, can be thought of as 

calculating the total entropy between the distributions. Entropy is the amount of information required to 

transmit a randomly selected event from a probability distribution. A distribution with events that have a high 

probability of occurring has a low entropy, whereas a distribution where events that have an equal probability 

has a higher entropy. Cross-entropy builds upon the concept of entropy from information theory and calculates 
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the amount of information required to represent or transmit an average event from one distribution compared 

to another distribution [115]. The cross-categorical entropy can be mathematically expressed as [116]: 

𝐶𝐶𝐸 = −
1

𝑁
∑  

𝑁

𝑖=1

log (𝑝𝑖[𝑦𝑖]) 

(12) 

where 𝑁 is the number of examples, 𝑦𝑖 is the target class index, and 𝑝𝑖 is the neural network output (probability 

distribution). 

Categorical Cross-Entropy is used with multi-class classification, where each class is given a distinct integer 

value, and the goal values are in the range of {0, 1, 3, ..., n}. It is the preferred loss function mathematically 

within the maximum likelihood inference paradigm. The loss function should be assessed first, and only altered 

if necessary. For each class in the task, the average difference between the actual and predicted probability 

distributions will be calculated as a score by cross-entropy. A perfect cross-entropy value is zero once the 

score is minimized [117]. Employing the cross-entropy error function, as opposed to the sum-of-squares, for 

a classification problem results in both faster training and enhanced generalization [118]. 

The choice of activation function depends on the specific application. In this case, we have multiple classes 

but only one can be present at a time. For this type of problem, the SoftMax activation function is often the 

best choice because it allows us to interpret the outputs as probabilities. The loss function and activation 

function are often chosen together. When using the SoftMax activation function, it is common to use cross-

entropy as the loss function, or more specifically categorical cross-entropy in this case since we are dealing 

with a multiclassification problem. These two functions work well together because the cross-entropy function 

cancels out the plateaus at each end of the SoftMax function, which speeds up the learning process.  

f) Optimizers 

Adam 

Adam optimization algorithm is a stochastic gradient descent extension that has lately gained more popularity 

for use in computer vision and natural language processing. In place of the conventional stochastic gradient 

descent method, Adam is an optimization technique that may be used to iteratively update network weights 

depending on training data. Adam was introduced by Diederik Kingma from OpenAI and Jimmy Ba from the 

University of Toronto in 2015 [119]. The authors list the following advantages of using Adam on non-convex 

optimization problems: simple to put into action; effective in computation; memory needs are minimal; 

rescaling of the gradients diagonally is not affected; effective for issues with vast amounts of data or 

parameters; suitable for non-stationary goals; fit for issues involving extremely noisy or sparse gradients, and 

hyperparameters often require minimal adjustments and may be interpreted intuitively. 
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Compared to classical stochastic gradient descent, Adam is unique. For all weight updates, stochastic gradient 

descent maintains a constant learning rate (referred to as alpha), which does not fluctuate throughout training. 

As learning progresses, a learning rate is maintained and independently adjusted for each network weight 

(parameter). Using estimations of the first and second moments of the gradients, the approach calculates unique 

adaptive learning rates for various parameters. According to the authors [119], Adam combines the benefits of 

two more stochastic gradient descent modifications. Specifically: the adaptive gradient algorithm (AdaGrad): 

this method increases performance in situations with sparse gradients by maintaining a per-parameter learning 

rate; and Root Mean Square Propagation (RMSProp): this method additionally retains per-parameter learning 

rates that are customized in accordance with the weight gradients' average recent magnitudes. The algorithm 

performs effectively on online and non-stationary issues (e.g., noisy) according to this. 

Adam is aware of the advantages of RMSProp and AdaGrad. Adam uses the average of the second moments 

of the gradients in addition to the average of the first moments, which is how RMSProp adjusts the parameter 

learning rates (the uncentered variance). The constants beta1 and beta2 regulate the decay rates of these moving 

averages, and the method specifically creates an exponential moving average of the gradient and the squared 

gradient. Moment estimations are biased towards zero as a result of the starting value of the moving averages 

and beta1 and beta2 values that are near 1.0 (recommended). By first computing the biased estimates and then 

the bias-corrected estimates, this bias is eliminated. 

Adam is a well-known deep learning method because it produces good results quickly. Empirical findings 

show that Adam performs admirably in real-world applications and compares favorably to other stochastic 

optimization techniques. Adam was practically proven in the original study to show that convergence satisfies 

the predictions of the theoretical approach. It can tackle real-world deep learning issues effectively using huge 

models and datasets [119]. Adam is now advised as the default approach to employ in practice and frequently 

performs somewhat better than RMSProp. Adam’s configuration parameters are alpha, beta1, beta2, and 

epsilon. alpha, also known as the step size or learning rate, is the frequency with which weights are updated. 

Prior to the rate being modified, initial learning proceeds more quickly for larger numbers. Smaller values 

drastically reduce learning during training. beta1 is an estimate of the initial moment's exponential decay rate, 

and beta2 is the rate of exponential decline for the estimations from the second instant. epsilon is extremely 

low in order to avoid any division by zero during implementation.  

In this work, the Adam optimizer algorithm is used for the CNN, LSTM, and CNN-LSTM models. The Adam 

study [119] proposes that alpha=0.001, beta1=0.9, beta2=0.999, and epsilon=10E-8 are good default 

parameters for the evaluated machine learning issues, hence, these parameters will be used in this work. 

AdaMax 

It is possible to think of Adam as updating weights in a manner that is inversely proportional to the scaled L2 

norm (squared) of earlier gradients. This is expanded by AdaMax to include the alleged infinite norm (max) 
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of prior gradients. The infinite norm computation displays a stable behavior [120]. In the AdaMax optimization 

algorithm, the computation of the infinite norm and the exponential moving average is performed. The 

exponential decay rates of the first moment and the exponentially weighted infinity norm are controlled by the 

beta parameters, beta1, and beta2. The epsilon parameter of the Adam optimization algorithm is also used in 

AdaMax. 

The base learning rate plays a crucial role in determining the steps of the AdaMax optimizer with respect to 

the loss. It determines the initial learning rate of the optimizer before any additional techniques, such as 

momentum or damping, are employed. Finding the optimal balance between the two learning rates is essential 

to achieve a minimum in a reasonable amount of time while avoiding the risk of overshooting the minimum. 

A commonly used approach for determining the appropriate base learning rate is to start with a value of 0.1 

and gradually decrease it by a factor of 10 until the results no longer improve [121]. In order to effectively 

model the relationship between inputs and outputs, it is important to ensure that the neural network has a 

suitable level of complexity. This can be achieved by selecting weights that differ significantly from one 

another. However, excessive complexity should be avoided to prevent overfitting and ensure the ability to 

generalize. Another parameter, weight decay, is a method to mitigate overfitting by adding a term to the loss 

function that penalizes the distance between weights, typically in the form of L2 normalization. This 

encourages the optimizer to reduce both the loss and the separation between weights. 

In this work, the AdaMax optimization algorithm is used only for the ANN model, which proved to be an 

improvement from using the Adam optimization algorithm during the experimentation phase. The 

configuration parameters of AdaMax are set to their default values as follows: learning_rate=0.001, 

beta_1=0.9, beta_2=0.999, epsilon=1e-07, and weight_decay=None [122].  

Table 8 summarizes the models used in this work for the Human Activity Recognition task and the 

hyperparameters of each model. 

Table 8: HAR models hyperparameters 

Model Hyperparameter Value 

ANN 

# of dense layers 2 

Neurons 
Dense Layer 1 128 

Dense Layer 2 5 

Dropout 0.2 

Optimization algorithm AdaMax 

Learning rate 0.0001 

Batch size 64 

Training epochs 42 (ES) 

CNN 

# of convolutional layers 2 

Kernel size 
Conv1D Layer 1 3 

Conv1D Layer 2 3 

Feature maps Conv1D Layer 1 64 
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Conv1D Layer 2 64 

Dropout 0.5 

Pooling size 2 

Neurons 
Dense Layer 1 128 

Dense Layer 2 5 

Optimization algorithm Adam 

Learning rate 0.0001 

Batch size 64 

Training epochs 33 (ES) 

LSTM 

# of LSTM layers 2 

Neurons 

LSTM Layer 1 128 

LSTM Layer 2 32 

Dense Layer 1 64 

Dense Layer 2 5 

Dropout 
LSTM Layer 1 0.2 

LSTM Layer 2 0.2 

Optimization algorithm Adam 

Learning rate 0.0001 

Batch size 64 

Training epochs 102 (ES) 

CNN-LSTM 

# of convolutional layers 1 

# of LSTM layers 1 

Kernel size 3 

Feature maps 64 

Pooling size 2 

Dropout 
Dropout Layer 0.5 

LSTM Layer 0.2 

Neurons 

LSTM Layer 64 

Dense Layer 1 128 

Dense Layer 2 5 

Optimization algorithm Adam 

Learning rate 0.0001 

Batch size 64 

Training epochs 72 (ES) 

 

B. Indoor Positioning System 

i. Hardware Components 

a) ESP32 

The ESP32 (Figure 34) is a single-chip Wi-Fi and Bluetooth combo device that has been engineered with low-

power 40 nm TSMC technology [123]. Its design is aimed at delivering the best possible power and RF 
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performance, with a focus on robustness, versatility, and reliability in a wide range of applications and power 

conditions. The ESP32 has been specifically developed for mobile, wearable electronics, and Internet of 

Things (IoT) applications. It boasts advanced low-power features, including fine-grained clock gating, multiple 

power modes, and dynamic power scaling [123]. Additionally, the output of the power amplifier is adjustable, 

which enhances the trade-off between communication range, data rate, and power consumption. 

 

 

Figure 34: ESP32 MCU 

The ESP32 is a highly integrated solution for Wi-Fi and Bluetooth IoT applications. The chip includes an 

antenna switch, RF balun, power amplifier, low-noise receive amplifier, filters, and power management 

modules, which results in a minimal Printed Circuit Board (PCB) area [123]. The ESP32 uses CMOS 

technology for its single-chip, fully integrated radio, and baseband, and it also integrates advanced calibration 

circuits that can compensate for external circuit imperfections or adapt to changing external conditions. The 

ESP32 implements a TCP/IP protocol and a complete 802.11 b/g/n Wi-Fi MAC protocol [123]. Power 

management is designed to require minimal host interaction, reducing the active-duty period. The ESP32 chip 

also integrates a Bluetooth link controller and Bluetooth baseband, which are responsible for executing 

baseband protocols and other low-level link routines, such as modulation/demodulation, packet processing, 

bitstream processing, frequency hopping, and more. The following are some of the most important 

specifications of the ESP32 chip [123]: 

• Core: ESP32-D0WDR2-V3 Dual Core 

• Core clock maximum frequency: 240 MHZ 

• Memory: 4 MB Flash, 448 KB ROM, 520 KB SRAM 

• Operating Temperature: -40⁰ Celsius ~ +85⁰ Celsius  

• Dimensions (mm): 35.6 x 34.4 x 3.5 

• Antenna: On-board dual PCB antennas 

• Bluetooth: Compliant with Bluetooth v4.2 BR/EDR and Bluetooth LE specifications, +9 dBm 

transmitting power, Simultaneous advertising, and scanning 

• Wi-Fi: 802.11b/g/n, 802.11n (2.4 GHz), up to 150 Mbps 
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Bluetooth Low Energy (BLE) is a wireless communication protocol designed for low-power devices. It 

operates in the 2.4 GHz ISM band and uses a technique called frequency hopping to reduce interference with 

other wireless devices. BLE devices can be in one of two roles: a central device or a peripheral device. Central 

devices, such as smartphones, initiate connections with peripheral devices, like a fitness tracker. Once 

connected, the central device can read and write data to the peripheral device's attributes, which are similar to 

variables. BLE devices can also broadcast advertising packets, which contain information such as the device 

name and available services. This allows other BLE devices to discover and connect to the advertising device 

without the need for prior pairing. BLE consumes very less power, hence it's commonly used in IoT devices 

and wearables which need to run for a long time on a small battery. The following are the specifications of the 

BLE communication protocol [124]: 

• Connection speed: 2 Mbps 

• Network data rate: 2 Mbps 

• Frequency: 2.4 GHz 

• Compatibility: Bluetooth 5 is fully compatible with Bluetooth 4.x. while supporting the whole main 

functionality of previous protocol versions (1.x., 2.x., 3.x.) 

• Message Capacity: 255 bytes which give 200-230 bytes for actual data payload 

• Indoor Range: 40-50 meters with obstacles, 200-2500 meters in line of sight 

According to Espressif Systems, ESP32 draws a current of  30-68 mA during modem sleep, 95-100 mA during 

receiving BT/BLE, and 180 mA during Wi-Fi 802.11n transmission [123]. The average power consumption 

has been calculated to be approximately 60-80 mAh since the BLE and Wi-Fi are only receiving/transmitting 

for 10 seconds every 30-second window.  

b) BLE Beacon 

Bluetooth Low Energy (BLE) is a wireless technology that is used for short-range data transmission. As the 

name suggests, BLE is designed to consume less energy and cost less than regular Bluetooth while having a 

similar communication range. BLE communication is done by sending small packets of data at regular intervals 

through radio waves. The iBeacon standard dictates that these packets are broadcasted every 100ms. BLE 

beacons (Figure 35) are the hardware of BLE devices that powers the broadcast signal transmission. Devices 

that are close to a BLE beacon may conduct activities thanks to beacons, which are the hardware that makes 

this possible. The movement and position of a BLE device may be traced using BLE beacons. Also, make it 

possible for location-based activities to be started when a BLE device enters a certain place. The use of BLE 

beacons enables BLE tracking. Advantages of iBeacon over GPS include that iBeacon is more accurate, faster, 

consumes less power, and can provide indoor navigation [125]. 
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Figure 35: Bluecharm BLE beacon 

Using radio waves, Bluetooth beacons communicate by sending data packets that are picked up by a suitable 

receiving device. These data packets might be standalone or function as triggers for other events like push 

notifications, app activities, and prompts on the receiving device. BLE operates on a separate set of channels 

while using the same frequency range as Bluetooth Classic (2.400-2.4835 GHz ISM band) [126]. BLE has 

three main ad channels, which speeds up device connections and cuts down on listening device scanning time. 

BLE employs direct sequence spread spectrum or frequency hopping using digital modulation methods to 

combat concerns with narrowband interference. The theoretical maximum radius of a Bluetooth beacon is less 

than 100m. Additionally, the delay from a disconnected state might be up to 6ms. The beacon's real range and 

reaction time depend on the operation it has been designed to do. Most BLE uses are short-range, including 

indoor wayfinding (using the standard 1M PHY). Most Bluetooth beacons have a reliable transmission range 

of up to 30 meters when there are no physical barriers in their path. The typical operational range depends on 

the transmit power, and the battery usage rises as the range does. Table 9 shows the battery life (in months) 

for each of the transmission power and interval configurations. 

Table 9: Battery life in months for each of the transmission power and interval configurations 

 

Data packets are sent using beacons. For iBeacons and Eddystone, these packets include somewhat different 

elements. However, beacons typically just provide an ID and some location data, together with a component 

that shows the beacon's state (e.g., temperature, battery status, etc.) iBeacon, AltBeacon, URIBeacon, and 

Eddystone are just a few of the several BLE beacon protocols in use. Apple uses the BLE beacon system 
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known as iBeacon to facilitate payments and provide in-store and on-site deals. Radius Networks' open-source 

alternative to iBeacon is called AltBeacon. The BLE beacon protocol used in this project is iBeacon. Apple 

created the iBeacon protocol, which enables devices to look for beacon signals within range and display the 

content that matches. Through BLE networks, Beaconstac SDK makes it simple to implement location 

analytics and proximity marketing. NearBee SDK may be used for iOS to effortlessly initiate rich beacon 

notifications [125]. 

An iBeacon-enabled beacon emits a serial ID number. Each data packet in an iBeacon's standardized BLE 

advertising format provides the following 4 pieces of information (Figure 36) [127]: 

 

Figure 36: Packet format of iBeacon 

1) Unique Universal Identifier (UUID): A beacon's general information. For instance, the name of the 

person or company that owns the beacon. 

2) Major: The geographical data of the beacon. For instance, this beacon is used in the aisles of store #9. 

3) Minor: More specific or minute details. For instance, a specific region of the major’s floor. 

4) Tx power: is the measure of the signal's amplitude at a precise distance of 1 meter from the device. Tx 

can be used to calculate device proximity from the beacon. 

Each ESP32 device is configured to scan for the BLE beacon using its MAC address and read the RSSI value 

of this BLE beacon. RSSI stands for Received Signal Strength Indicator. It is a measure of the strength of the 

signal being emitted by a beacon, as received by a device such as a smartphone or an ESP32 device. The 

strength of the signal is affected by the distance between the device and the beacon and the power at which the 

beacon is broadcasting. At maximum broadcasting power, the RSSI can range from -26 (when the device is 

very close to the beacon) to -100 (when the device is about 40-50 meters away from the beacon). RSSI is used 

to estimate the distance between the device and the beacon by comparing it to another value defined by the 

iBeacon standard called Measured Power. However, due to external factors that can impact radio waves such 

as absorption, interference, or diffraction, the RSSI tends to fluctuate. The further away the device is from the 

beacon, the more unstable the RSSI becomes. Measured Power is a fixed value that is calibrated at the factory 

and it represents the expected Received Signal Strength Indicator (RSSI) when a device is one meter away 
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from the beacon. By combining the read-only constant ‘Measured Power’ with the RSSI, we can estimate the 

distance between the device and the beacon. 

In this project, the Bluecharm BLE beacon, shown in Figure 35, is used. The following are its specifications: 

• Transmission: iBeacon, Eddystone URL, and/or Eddystone UID format. May be configured to 

broadcast battery strength. 

• MAC address: DD:34:02:06:76:84 

• BLE version: 4.0 and 5.0 

• Battery size: CR2032 Lithium Coin Battery (included) 

• Battery life: 16 months @ 1 second interval & 0dBm 

• Includes 3M double-back tape for affixing to a surface 

• Size: 36mm x 36mm x 5.75mm  

• Weight: 0.28 ounces including battery 

• Waterproofing: no 

• Password: yes 

• Wide TX Power range: select from -40, -20, -16, -12, -8, -4, 0, +4dBm 

• Interval: adjustable from 100-10,000 milliseconds including optimal precise numbers 

• On/Off switch: yes 

• Motion Sensor: yes 

• Chip: nRF52810 

• Transmit distance: 0.2-90 meters (BLE 5.0); 0.2-50 meters (BLE 4.0) 

Figure 37 shows the configuration of the BLE beacon used in this work. It is important to note that with the 

interval set to 600ms and the TX power set to +4dBm, the BLE beacon’s battery is expected to last for 7.5 

months, according to Table 9, which can then be replaced with a new one. 
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Figure 37: Configuration of Bluecharm BLE beacon 

ii. Data Collection 

Three ESP32 devices have been placed in separate rooms with the aim of scanning the BLE beacon and 

recording the received signal strength indicator (RSSI) value. These ESP32 devices are capable of detecting 

the BLE beacon and determining its proximity based on the strength of the received signal. The dimension and 

area of each room, also shown in Figure 38, are as follows: 

• Living room:  

o Length: 590 cm 

o Width: 296 cm  

o Area: 17.47 m2 

• Bedroom: 

o Length: 350 cm 

o Width: 268 cm  

o Area: 9.36 m2 

• Bathroom: 

o Length: 312 cm 

o Width: 268 cm  

o Area: 8.35 m2 
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Figure 38: Floor plan of the three partitions (rooms) and the locations of the ESP32s 

The ESP32 devices are programmed to scan for the BLE beacon using its MAC address and record the RSSI 

value in Firebase Realtime Database (RTDB) every 30 seconds. During the training phase, the BLE beacon is 

placed in different locations in each of the three rooms and the RSSI values from the three ESP32s are stored.  

To achieve this, the ESP32 program is coded to perform a number of tasks. To begin, the necessary libraries 

are imported. The WiFi.h library is utilized to connect to a Wi-Fi network and establish an internet connection, 

while the Firebase_ESP_Client.h library enables communication between the board and Firebase (Figure 39). 

The necessary BLE libraries: BLEDevice.h, BLEUtils.h, BLEScan.h, and BLEAdvertisedDevice.h are also 

imported. Subsequently, the Wi-Fi network’s SSID and password, Firebase API key, database path, database 

URL, and BLE beacon’s MAC address are specified.  

In the setup() function, the board is connected to the network using the provided SSID and password of the 

Wi-Fi network. The API key is assigned to the Web API Key of the Firebase project, and the database URL is 

to the Firebase RTDB URL. Next, an anonymous sign-in is done using the signUp() method with the last two 

arguments left empty. Upon successful sign-in, the signupOK variable is altered to indicate a successful 

outcome. In the loop() function, data is periodically transmitted to the database, given that the sign-in was 

successful and all necessary elements are in place. 
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Figure 39: ESP32 communication with Firebase RTDB 

The ESP32 uses a Bluetooth Low Energy (BLE) module to scan for nearby devices that are broadcasting BLE 

signals. This module allows the ESP32 to search for BLE devices and retrieve information about them, 

including the device's MAC address and the strength of the received signal (RSSI). The code implements the 

ESP32 as a Bluetooth Low Energy (BLE) device and conducts scans for nearby devices periodically at an 

interval of 10 seconds. If the BLE beacon is found, that is if the MAC address of one of the found devices 

matches the MAC address of the BLE beacon, the RSSI value of this device is stored along with the timestamp 

in the Firebase RTDB. In case the BLE beacon is not among the found devices at an instant, a default RSSI 

value of ‘-110’ will be stored. 

The setJSON function is used to store the acquired RSSI and timestamp information as JSON data at a 

designated node for this specific ESP32 device within the Firebase RTDB. The function returns a Boolean 

value that indicates the success of the operation. This is dependent on the fulfillment of two conditions: that 

the server returns an HTTP status code of 200, and that there is consistency in the data types between the 

request and response. Figure 40 shows the ESP32 output throughout each step using Arduino Serial Monitor. 

It is worth noting that the average bandwidth consumption of the ESP32 is approximately 3-3.5 megabytes per 

hour. 

 

 

Figure 40: ESP32 output using Arduino Serial Monitor 

For each of the three rooms, the RSSI values from each of the ESP32s are retrieved from the Firebase RTDB 

using a Python script and stored as a CSV file where each row represents the RSSI values recorded in one 

instant. The dataset has three columns, each column represents the RSSI values recorded by one of the ESP32s 

named ‘esp1’, ‘esp2’, and ‘esp3’, with the label of this room, added as a column to later be fed as training data 

to the machine learning models, as shown in Figure 41.  
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Figure 41: Dataset of the beacon’s RSSI values from three ESP32s 

iii. Data Pre-processing 

Upon inspection, the dataset is found to contain no null values. The records in which the three ESP32s recorded 

an RSSI value of ‘-110’ were removed from the dataset, as such records indicate that the BLE beacon was 

either turned off or out of range. Next, the same data preprocessing techniques discussed earlier in the HAR 

Data Pre-processing section are applied. Data standardization using StandardScaler is applied to the dataset of 

RSSI values. Then, for applying to new data using the “transform” function, the StandardScaler object 

containing the scaling parameters is stored as a .bin file.  

Table 10: Number of samples for each room 

Location Number of samples 

Living Room 313 

Bathroom 287 

Bedroom 242 

 

Figure 42: Number of samples for each room 

As for data splitting, the dataset is split using the 80:20 random subsampling ratio, where 80% of the data will 

be randomly selected to be used for training the machine learning models, and the remaining 20% used for 

testing the performance of the models. Table 10 shows the number of samples collected from each room. The 
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graph in Figure 42 is a visualization of the table, showing the distribution of the samples across the three 

classes. 

iv. Machine Learning Models 

a) k-Nearest Neighbor (kNN) 

 

Figure 43: kNN algorithm 

kNN classifier categorizes unlabeled observations by putting them into the same category as the labeled 

samples that are the most comparable to them. For both the training dataset and the test dataset, observational 

characteristics are collected [128]. A majority vote is utilized to determine the class label for classification 

problems; the label that is most frequently displayed around a particular data point is used. It is important to 

note that the KNN method belongs to a group of "lazy learning" models, which just store training datasets 

rather than going through a training phase. This also implies that all computing happens at the time of 

classification or prediction. It is also known as an instance-based or memory-based learning approach since it 

stores all of its training data entirely in memory [129].  

The distance between the query point and the other data points must be determined in order to determine which 

data points are closest to a specific query point. These distance measurements aids in the creation of decision 

borders, which divide query points into several zones. The most widely used distance metric is called the 

Euclidean distance, and it can only be employed with real-valued vectors. The straight line between the query 

location and the other point being measured is calculated using the formula [129]: 

𝑑(𝑥, 𝑦) = √∑(𝑦𝑖 − 𝑥𝑖)2

𝑛

𝑖=1

 

(13) 

The Minkowski distance is a generalized form of the Euclidean and Manhattan distance metrics, characterized 

by a tunable parameter, 𝑝, in the formula [129]: 
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Minkowski Distance = (∑  

𝑛

𝑖=1

|𝑥𝑖 − 𝑦𝑖|)

1/𝑝

 

(14) 

The value used in this work is 𝑝 = 2, which results in the Euclidean distance. 

b) Naïve Bayes (NB) 

Naïve Bayes is one of the simplest algorithms to apply to a dataset. As the name suggests, the algorithm 

assumes that all variables in the dataset are "naïve," meaning they are not correlated with each other. Naïve 

Bayes is a very popular classification algorithm used primarily to maintain baseline accuracy in data sets. The 

concept behind the algorithm lies in the Bayes Theorem that is mathematically expressed, given class variable 

𝑦 and dependent feature vector 𝑥1 through 𝑥𝑛, as [130]: 

𝑃(𝑦 ∣ 𝑥1, … , 𝑥𝑛) =
𝑃(𝑦)𝑃(𝑥1, … , 𝑥𝑛 ∣ 𝑦)

𝑃(𝑥1, … , 𝑥𝑛)
 

(15) 

where 𝑃(𝑥1, … , 𝑥𝑛) and 𝑃(𝑦) are the probabilities of 𝑥1, … , 𝑥𝑛 and 𝑦 independently of each other; 

𝑃(𝑦|𝑥1, … , 𝑥𝑛) is the conditional probability that event 𝑦 will occur given that 𝑥1, … , 𝑥𝑛 have occurred, also 

called the posterior probability; and 𝑃(𝑥1, … , 𝑥𝑛 ∣ 𝑦) is the conditional probability that events 𝑥1, … , 𝑥𝑛 will 

occur given that 𝑦 has occurred. 

We can use Bayes' theorem to find the probability that 𝑦 will occur given that 𝑥1, … , 𝑥𝑛 has occurred. where 

𝑥1, … , 𝑥𝑛 is evidence and 𝑦 is the hypothesis. The assumption here is that the predictors/features are 

independent. The presence of one particular trait does not affect other traits. Therefore, it is called naïve. In 

the process of modeling, the optimization of finding the hypothesis with the highest posterior probability is 

referred to as the Maximum A Posteriori (MAP) method [131]. 

The Gaussian Naïve Bayes algorithm for classification used in this work is implemented using sklearn’s 

GaussianNB function. This algorithm operates under the assumption that the likelihood of the features follows 

a Gaussian distribution: 

𝑃(𝑥𝑖 ∣ 𝑦) =
1

√2𝜋𝜎𝑦
2

exp (−
(𝑥𝑖 − 𝜇𝑦)2

2𝜎𝑦
2 ) 

(16) 

Where the parameters 𝜎𝑦 and 𝜇𝑦 are estimated using maximum likelihood [130]. 
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c) Support Vector Machine (SVM) 

Support Vector Machine, or SVM, is used to solve Classification and Regression problems. However, it is 

largely employed in Machine Learning Classification issues. The SVM algorithm's objective is to establish the 

best line or decision boundary that can divide n-dimensional space into classes, allowing quick classification 

of new data points in the future. A hyperplane is the optimal decision boundary. SVM selects the extreme 

vectors and points that aid in the creation of the hyperplane. Support vectors refer to these extreme cases as 

shown in Figure 44 [132].  

 

Figure 44: SVM hyperplane and support vectors 

By determining the optimum hyperplane and optimizing the distance between points, it divides the data into 

many groups. A particularly effective tool for navigating high-dimensional spaces is the kernel function. The 

kernel function is a mathematical operation that transforms a low-dimensional input space into a higher-

dimensional space (Figure 45). Kernel functions offer the ability to perform linear discriminants on nonlinear 

manifolds, which may result in more accuracy and robustness than simple linear models. This is accomplished 

by mapping the data into a new feature space and the data will be linearly separable in this space. This implies 

that a hyperplane that separates the data can be found using an SVM [133]. 

 

Figure 45: Kernel functions transform input space into a higher-dimensional feature space 
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Two important parameters of support vector machines are C and gamma. For each incorrectly classified data 

point, the C parameter applies a penalty. If C is low, choosing a decision boundary with a high margin comes 

at the expense of more misclassifications because the penalty for incorrectly classified points is low. SVM 

attempts to reduce the number of incorrectly classified examples due to the high penalty when C is big, which 

leads to a decision boundary with a narrower margin. Not all examples of misclassification receive the same 

penalty. It is directly proportional to the distance to the decision boundary. As for the Gamma parameter, low 

gamma values suggest a wide similarity radius, which causes more points to be grouped together. To be 

included in the same group (or class) with high gamma values, the points must be quite close to one another. 

As a result, models with very high gamma values are more likely to overfit [134]. It is worth noting that the C 

parameter is applicable to all SVM kernels, whereas the Gamma parameter is only applicable to the RBF, 

Polynomial, and Sigmoid kernels. 

The SVC, NuSVC, and LinearSVC algorithms are all capable of performing binary and multi-class 

classification on a dataset. SVC and NuSVC are similar in nature, but accept slightly different parameters and 

have distinct mathematical formulations [135].  

LinearSVC 

The term "linearly separable data" refers to data that can be divided into two groups using only a single straight 

line [136]. LinearSVC is a faster implementation of Support Vector Classification specifically for linear 

kernels and does not accept the kernel parameter as it is assumed to be linear. In cases where the training data 

is linearly separable, two parallel hyperplanes can be selected to separate the two classes of data with the 

greatest distance between them. The area bounded by these two hyperplanes is referred to as the "margin" and 

the maximum-margin hyperplane is the hyperplane that lies in the middle of them. When the data is not linearly 

separable, the hinge loss function is utilized in the SVM algorithm. The linear kernel is defined as ⟨𝑥, 𝑥′⟩ [135]. 

Polynomial Kernel 

An SVM kernel known as a polynomial kernel maps the data into a higher-dimensional space using a 

polynomial function. This is accomplished by taking the dot product of the polynomial function in the new 

space and the original space's data points. A polynomial function is used to map the data into a higher-

dimensional space in a polynomial kernel for SVM. The polynomial function in the new space is then taken 

as the dot product of the data points in the original space. In SVM classification applications when the data 

cannot be separated linearly, the polynomial kernel is frequently utilized. The polynomial kernel can 

occasionally locate a hyperplane that divides the classes by mapping the data into a higher-dimensional space. 

For d-degree polynomials, the polynomial kernel is defined as [135]: 

(𝛾⟨𝑥, 𝑥′⟩ + 𝑟)𝑑 

(17) 

where 𝑑 is specified by parameter degree, 𝑟 by coef0 [137]. 
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RBF Kernel 

The Radial Basis Function (RBF) kernel is commonly utilized for Support Vector Machine (SVM) training. 

When using this kernel, two parameters need to be carefully considered: C and gamma. C, a parameter that is 

applicable to all SVM kernels, balances the trade-off between the misclassification of training samples and the 

simplicity of the decision boundary. A low value of C results in a smooth decision boundary, while a high 

value of C seeks to classify all training samples accurately. On the other hand, gamma determines the impact 

a single training sample has on the model. The higher the value of gamma, the closer other samples must be 

to be affected by it. The RBF kernel is defined as [135]: 

exp (−𝛾‖𝑥 − 𝑥′‖2) 

(18) 

where 𝛾 is specified by parameter gamma and has to be greater than 0 [137]. 

NuSVC 

The 𝜈-SVC formulation [138] is a reparameterization of the 𝐶-SVC and is mathematically equivalent. A 

parameter 𝜈 is introduced instead of 𝐶, which controls the number of support vectors and margin errors. 𝜈 

serves as an upper bound on the fraction of margin errors and a lower bound on the fraction of support vectors, 

thus 𝜈 ∈ (0,1]. A margin error corresponds to a sample that is either misclassified or correctly classified but 

does not fall beyond the margin boundary. 

Figure 46 shows an example of the four SVM classifiers applied to the Iris dataset [139].  

 

Figure 46: Decision boundaries of the four SVM classifiers applied to the Iris dataset 

d) Decision Tree (DT) 

A decision tree, as shown in Figure 47 is like a flowchart where each inner node represents a test of a feature, 

and each leaf node represents a class label (the decision made after all features have been computed) and a 

branch. The path from the root to the leaf represents a classification rule. The three different sorts of nodes in 

a decision tree are illustrated in Figure 47 [140]. A decision tree consists of three main components: decision 

nodes, leaf nodes, and a root node. A training dataset is divided into branches by a decision tree algorithm, 

which then separates those branches further. This process keeps going until a leaf node is reached. It is 
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impossible to further separate the leaf node. The attributes that are utilized to predict the outcome are 

represented by the nodes in the decision tree. Links to the leaves are provided by decision nodes.  

Decision trees are built through an algorithmic approach that identifies how to split a data set based on various 

criteria. It is one of the most widely used practical methods of supervised learning. Decision trees are a 

nonparametric supervised learning technique used for both classification and regression tasks. A tree model in 

which the target variable can take on a discrete set of values is called a classification tree.  

 

 

Figure 47: Decision tree algorithm 

Information gain is a crucial component in determining which feature to split on at each step during the tree-

building process. The goal is to create a simple tree structure; therefore, it is imperative to choose the split that 

results in the purest child nodes. A widely utilized measure of purity is known as information. The information 

value quantifies the extent to which a feature provides information about the class for each node of the tree. 

The split that yields the highest information gain is selected as the initial split and the process continues until 

all child nodes are pure or until the information gain reaches zero. 

In information theory, entropy measures the uncertainty or impurity within a group of observations. This metric 

plays a crucial role in determining how a decision tree splits data. A clearer depiction of set purity can be seen 

in the accompanying image. For a dataset containing N classes, entropy can be calculated using the formula 

[141]: 

𝐸 = − ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

𝑁

𝑖=1

 

(19) 

Information gain serves as a measure of the amount of information a feature contributes to a class. This metric 

is instrumental in determining the sequence of attributes in the nodes of a decision tree. The main node is 
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referred to as the parent node, while sub-nodes are designated as child nodes. Information gain enables us to 

evaluate the quality of node splitting in a decision tree. It can be calculated using the following formula [141]: 

𝐺𝑎𝑖𝑛 = 𝐸𝑝𝑎𝑟𝑒𝑛𝑡 − 𝐸𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 

(20) 

The term "𝐺𝑎𝑖𝑛" refers to information gain. "𝐸𝑝𝑎𝑟𝑒𝑛𝑡" represents the entropy of the parent node, while 

"𝐸𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛" is the average entropy of the child nodes. The greater the entropy removal, the higher the 

information gain, making a split more favorable. Hence, the attribute with the highest information gain from 

a set is selected as the parent or root node. 

Decision Tree hyperparameters include the following [142]: 

• min_samples_split – Minimum number of samples a node must possess before splitting. 

• min_samples_leaf – Minimum number of samples a leaf node must possess. 

• min_weight_fraction_leaf – Minimum fraction of the sum total of weights required to be at a leaf node. 

• max_leaf_nodes – Maximum number of leaf nodes a decision tree can have. 

• max_features – Maximum number of features that are taken into the account for splitting each node. 

e) Random Forest Classifier (RFC) 

A random forest is a machine-learning method for solving classification and regression issues. It makes use of 

ensemble learning, which is considered a method for solving complicated issues by combining a number of 

classifiers. It consists of many decision trees (Figure 48) which create a "forest" that is trained via bagging or 

bootstrap aggregation [143]. The accuracy of machine learning algorithms is increased by bagging, an 

ensemble meta-algorithm. Based on the predictions made by the decision trees, the mechanism of operation 

determines the outcome. It makes predictions by averaging or averaging out the results from different trees. 

The accuracy of the result grows as the number of trees increases. Additionally, it eradicates a decision tree 

algorithm’s drawback. It improves precision and lowers dataset overfitting. Features of a Random Forest 

Algorithm include higher accuracy than a decision tree algorithm, effective ways of handling missing data, 

producing a reasonable prediction without hyper-parameter tuning, and solving the issue of overfitting in 

decision trees.  

Decision trees are the building blocks of a random forest algorithm. For a more precise prediction, Random 

Forest produces numerous decision trees that are then combined. The Random Forest model is based on the 

idea that several uncorrelated models (the various decision trees) work significantly better together than they 

do separately. Each tree provides a classification or a "vote" when using Random Forest for categorization. 

The classification with the most "votes" is chosen by the forest. When performing regression with Random 

Forest, the forest selects the mean of all tree outputs [144]. The fact that there is little to no correlation between 

the component models—specifically, between the decision trees that make up the larger Random Forest 
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model—is crucial in this situation. The bulk of the decision trees will be accurate, shifting the overall result in 

the right direction even while some of them may make mistakes.  

 

 

Figure 48: Random forest algorithm 

In random forest, the hyperparameters are the number of trees, number of features, type of trees (such as GBM 

or M5), maximum depth of the tree, minimum number of samples required to be at a leaf node, and minimum 

number of samples required to split an internal node [145]. It is usually trained using the bagging method. The 

"bagging" approach utilizes a Bootstrap Aggregation ensemble machine learning technique. An ensemble 

technique combines predictions from various machine learning algorithms to provide predictions that are more 

precise than those from a single model [143].  

f) Gradient Boosting Classifier (GBC) 

The Gradient Boosting Classifier utilizes a differentiable loss function, which can either be a standardized 

function like a logarithmic loss for classification or squared errors for regression, or a custom-defined loss 

function. The classifier consists of two important components: a weak learner and an additive component. 

Decision trees act as the weak learner, and regression trees are used to produce real values. Over time, new 

trees are added to the model to correct errors in predictions while the existing trees remain unchanged as shown 

in Figure 49 [146]. The parameters of the trees are optimized through a process resembling gradient descent 

in order to reduce the error, and this process continues until a specified number of trees have been added or 

the loss has fallen below a predetermined threshold [147]. 
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Figure 49: Gradient boosting tree algorithm 

Gradient Tree Boosting, also known as Gradient Boosted Decision Trees (GBDT), is a method of boosting 

that can be applied to an arbitrary differentiable loss function [148]. GBDT is a widely utilized and accurate 

algorithm for solving both regression and classification problems. The Gradient Boosting Classifier is capable 

of handling both binary and multi-class classification problems. The number of weak learners, or regression 

trees, can be specified through the parameter n_estimators, while the size of each tree can be controlled through 

either the max_depth parameter for tree depth or the max_leaf_nodes parameter for the number of leaf nodes. 

Additionally, the learning_rate hyper-parameter, in the range (0.0, 1.0], plays a crucial role in controlling 

overfitting via shrinkage [149]. 

g) Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis (LDA) is a method used in statistics and other fields to determine a linear 

combination of features that distinguish or separate various classes of objects or events. This linear 

combination can then be utilized as a linear classifier or, more frequently, as a means of reducing the number 

of dimensions before further classification. LDA is strongly associated with Analysis of Variance (ANOVA) 

and regression analysis, which both aim to express a dependent variable as a linear combination of other 

features or measurements. However, ANOVA employs categorical independent variables and a continuous 

dependent variable, while discriminant analysis uses continuous independent variables and a categorical 

dependent variable, namely the class label [150].  

The original data matrix must be projected into a lower dimensions space in order to achieve the LDA 

technique's objective. There are three actions that need to be conducted to accomplish this. The first step is 

calculating the separability between distinct classes (the distance between the means of different classes), also 

known as the between-class variance or between-class matrix. The second step is calculating the within-class 

variance or within-class matrix, also known as the distance between the mean and the samples of each class. 

The third step is building a lower dimensional space that optimizes between-class variance and minimizes 

within-class variance [151]. 
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h) Quadratic Discriminant Analysis (QDA) 

The observations from each class are assumed to be normally distributed in this approach, which is similar to 

LDA, but it does not assume that each class has the same covariance matrix. LDA and QDA vary primarily in 

that QDA is a considerably more flexible classifier than LDA because LDA assumes that each class has a 

covariance matrix. This implies that it has low variance by default, which indicates that it will perform 

similarly across various training datasets. The disadvantage is that LDA might have a large bias if the 

presumption that all classes have the same covariance is false. Alternatively, QDA posits that every class has 

a unique covariance matrix [152]. Figure 50 shows decision boundaries for Linear Discriminant Analysis and 

Quadratic Discriminant Analysis [153]. 

 

Figure 50: Comparison of LDA vs. QDA decision boundaries 

i) Voting Classifier  

A voting classifier is a type of machine learning estimator that develops a number of base models or estimators 

and makes predictions based on averaging their results. Voting for each estimator output can be integrated 

with the aggregating criteria. The Voting Classifier integrates multiple classifiers in order to produce a final 

prediction. This approach can be useful when multiple models perform similarly well, and their individual 

limitations can be balanced out by combining them. There are two categories of voting criteria: Hard Voting, 

where voting is calculated on the predicted output class; and Soft Voting, where voting is calculated on the 

predicted probability of the output class. In this work, hard voting (majority voting) is employed, where the 

class label assigned to a sample is the one that is predicted by the majority of the individual classifiers. In the 

event of a tie, the Voting Classifier determines the final class label using the ascending sort order of the 

individual classifiers [149]. The process is demonstrated in Figure 51 [154]. 
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Figure 51: Voting classifier algorithm 

v. Hyperparameters 

Table 11 summarizes the machine learning models used in this work and the hyperparameters of each model. 

Table 11: IPS classifiers hyperparameters 

Model Name Hyperparameters 

KNeighborsClassifier 

'algorithm': 'auto', 'leaf_size': 30, 'metric': 'minkowski', 

'metric_params': None, 'n_jobs': None, 'n_neighbors': 27, 'p': 2, 

'weights': 'uniform' 

GaussianNB 'priors': None, 'var_smoothing': 1e-09 

LinearSVC 

'C': 1.0, 'class_weight': None, 'dual': True, 'fit_intercept': True, 

'intercept_scaling': 1, 'loss': 'squared_hinge', 'max_iter': 1000, 

'multi_class': 'ovr', 'penalty': 'l2', 'random_state': None, 'tol': 

0.0001, 'verbose': 0 

SVC_poly 

'C': 1.0, 'break_ties': False, 'cache_size': 200, 'class_weight': 

None, 'coef0': 0.0, 'decision_function_shape': 'ovr', 'degree': 3, 

'gamma': 'scale', 'kernel': 'poly', 'max_iter': -1, 'probability': 

False, 'random_state': None, 'shrinking': True, 'tol': 0.001, 

'verbose': False 

SVC_rbf 

'C': 1.0, 'break_ties': False, 'cache_size': 200, 'class_weight': 

None, 'coef0': 0.0, 'decision_function_shape': 'ovr', 'degree': 3, 

'gamma': 'scale', 'kernel': 'rbf', 'max_iter': -1, 'probability': False, 

'random_state': None, 'shrinking': True, 'tol': 0.001, 'verbose': 

False 

NuSVC 

'break_ties': False, 'cache_size': 200, 'class_weight': None, 

'coef0': 0.0, 'decision_function_shape': 'ovr', 'degree': 3, 

'gamma': 'scale', 'kernel': 'rbf', 'max_iter': -1, 'nu': 0.5, 
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'probability': True, 'random_state': None, 'shrinking': True, 'tol': 

0.001, 'verbose': False 

DecisionTreeClassifier 

'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 

'max_depth': None, 'max_features': None, 'max_leaf_nodes': 

None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 

'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 

'random_state': None, 'splitter': 'best' 

RandomForestClassifier 

'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 

'criterion': 'gini', 'max_depth': None, 'max_features': 'auto', 

'max_leaf_nodes': None, 'max_samples': None, 

'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 

'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 

'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 

'random_state': None, 'verbose': 0, 'warm_start': False 

GradientBoostingClassifier 

'ccp_alpha': 0.0, 'criterion': 'friedman_mse', 'init': None, 

'learning_rate': 0.1, 'loss': 'deviance', 'max_depth': 3, 

'max_features': None, 'max_leaf_nodes': None, 

'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 

'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 

'n_estimators': 100, 'n_iter_no_change': None, 'random_state': 

None, 'subsample': 1.0, 'tol': 0.0001, 'validation_fraction': 0.1, 

'verbose': 0, 'warm_start': False 

LinearDiscriminantAnalysis 

'covariance_estimator': None, 'n_components': None, 'priors': 

None, 'shrinkage': None, 'solver': 'svd', 'store_covariance': False, 

'tol': 0.0001 

QuadraticDiscriminantAnalysis 
'priors': None, 'reg_param': 0.0, 'store_covariance': False, 'tol': 

0.0001 

VotingClassifier 

'estimators': [('1', RandomForestClassifier()), ('2', 

GradientBoostingClassifier()), ('3', DecisionTreeClassifier()), 

('4', LinearDiscriminantAnalysis()), ('5', 

QuadraticDiscriminantAnalysis())], 'flatten_transform': True, 

'n_jobs': None, 'verbose': False, 'voting': 'hard', 'weights': [2, 2, 

1, 1, 1] 
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C. Web App 

i. Firebase Database 

Firebase is a platform that offers a variety of tools and technologies to help developers create mobile and web 

applications. Its most well-known services include Firebase Analytics, Firebase Cloud Messaging, Firebase 

Auth, Realtime Database, Firebase Storage, and Firebase Hosting. The Firebase Realtime Database (RTDB) 

is a NoSQL cloud-based storage solution that allows for the real-time syncing of data across all connected 

clients. This means that any changes made to the database by one client will be immediately reflected on all 

other connected clients. The database is also cross-platform, meaning that it can be used with apps developed 

for different operating systems, such as Apple and Android, and the SDKs for these platforms automatically 

receive updates with the latest data. Firebase RTDB is a NoSQL database, optimized for fast data access, which 

makes it ideal for real-time applications with high traffic and millions of users. It also allows for offline 

functionality, so even when a device is disconnected, real-time events will still occur, providing a seamless 

user experience. When the device reconnects, the database automatically synchronizes any local data changes 

with any remote updates that occurred while offline, resolving any conflicts automatically. The database also 

has a robust security system, called Security Rules, which allows for flexible, expression-based rules to define 

data structure and access permissions. Integrating with Firebase Authentication allows developers to specify 

who has access to what data and how they can access it [155].  

An API key is a unique identifier that is utilized to direct requests to a specific Firebase project when interacting 

with Firebase and Google services. Unlike the traditional method of using API keys to restrict access to 

backend resources, in Firebase services, API keys are not used for this purpose. Instead, Firebase Security 

Rules are used to control access to resources by users, and App Check is used to control access to resources 

by apps. One Firebase project can have multiple API keys; however, each API key can only be linked to one 

Firebase project. Firebase provides a default API key for all the apps within a project, regardless of the platform 

(iOS, Android, or web). For web applications, this key can be found in the Firebase config object under the 

field "apiKey". This key serves as a unique identifier for the Firebase project when utilizing Firebase or Google 

services. It is used to associate API requests with the project for tracking usage and billing purposes. 

Additionally, it can be used to access public data by passing the key as a query parameter in a REST API call. 

The Firebase SDK automatically looks for the API key in the Firebase config file/object when making API 

calls [156]. 

The Firebase Realtime Database can also be used as a REST endpoint by appending ".json" to the end of the 

URL and sending a request from an HTTPS client. HTTPS is required because Firebase only responds to 

encrypted traffic to ensure the safety of the data. A REST API, or Representational State Transfer API, is an 

application programming interface that follows the constraints of the REST architectural style and allows for 

communication with RESTful web services. When a client makes a request through a RESTful API, it retrieves 
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a representation of the state of the resource being requested. This representation can be in various formats such 

as JSON, HTML, XLT, Python, PHP, or plain text, with JSON being the most commonly used because it is 

language-agnostic and can be read by both humans and machines. In Firebase, to achieve the same result as 

the JavaScript push() method, a POST request can be issued. A successful request will be indicated by a 200 

OK HTTP status code and the response will contain the child name of the new data specified in the POST 

request [157]. 

ii. Gmail API 

The Gmail API is a way for developers to access and manage Gmail accounts programmatically. It can be used 

for various purposes such as reading and extracting email data, sending automated or programmatic messages, 

migrating email accounts, organizing, and sorting messages, and standardizing email signatures across an 

organization. The API allows for two ways to send an email, by directly using the messages.send method or 

by sending it from a draft using the drafts.send method. The process of sending an email involves creating the 

email content and encoding it as a base64url string, creating a new message resource and setting its raw 

property to the encoded string, and then calling the appropriate method to send the message. The exact steps 

may vary depending on the chosen client library and programming language. The Gmail API has specific 

requirements for the format of the emails it handles, which must be MIME-compliant and encoded as base64url 

strings. There are various tools and libraries available in different programming languages that can assist in 

creating and encoding emails in this format [158]. 

Google APIs, including Gmail API, utilize the OAuth 2.0 protocol for verifying a user's identity and granting 

access to certain resources. This protocol is widely used and supported by Google for various types of 

applications, including web servers, client-side applications, installed applications, and limited-input device 

applications. To start using OAuth 2.0 with Google, developers need to obtain OAuth 2.0 client credentials 

from the Google API Console. After obtaining the credentials, the client application will request an access 

token from the Google Authorization Server. Once the token is received, the client application extracts it and 

sends it to the Google API they want to access. This process is demonstrated in Figure 52 [159].  

In order to access a Google API using OAuth 2.0, there are five main steps that must be followed. The first 

step is to obtain OAuth 2.0 credentials from the Google API Console, such as a client ID and client secret, 

which are known to both Google and the application. The specific values required will depend on the type of 

application being built. Next, an access token must be obtained from the Google Authorization Server, which 

grants access to the API. This access token can grant varying levels of access to multiple APIs, and the level 

of access is controlled by the "scope" parameter. This parameter is included in the request for an access token.  

It is required that the user logs in with their Google account for certain requests. The user is then asked if they 

will grant the permissions that the application is requesting. This process is called user consent [160].  
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Next, when the user grants permission, the Google Authorization Server sends an access token to the 

application, along with a list of scopes of access that has been granted by the token. If the user does not grant 

permission, an error is returned. It's best to request scopes incrementally when access is required, instead of 

asking for them all at once. The application should compare the scopes received in the access token to the 

scopes required for its features and functionality. Any features that can't function without the required scope 

should be disabled. The scope requested may not match the scope received, even if the user granted all the 

requested scopes. It is important to refer to the documentation of each API for the required scopes for access. 

Some APIs may map multiple scope string values to a single scope of access, returning the same scope string 

for all values that were requested. After an application has obtained an access token through the OAuth 2.0 

process, it is sent to a Google API in an HTTP Authorization request header. It is important to note that the 

access token is only valid for the specific set of operations and resources for which it was requested and must 

be refreshed if the application needs access to a Google API beyond the lifetime of a single token. The Google 

OAuth 2.0 endpoint is compatible with various programming languages and frameworks such as PHP, Java, 

Python, Ruby, and ASP.NET [160]. 

 

Figure 52: OAuth 2.0 protocol flow 

The process of accessing a protected resource, as shown in Figure 52, begins when the client is seeking access 

to a protected resource and must first authenticate with the authorization server. This is achieved by presenting 

an authorization grant, which serves as a credential that represents the resource owner's authorization. The 

authorization server then verifies the validity of the authorization grant and authenticates the client to ensure 

it is authorized. If the grant is found to be valid, the authorization server issues an access token and a refresh 

token to the client. It is crucial for the client to securely store the refresh token for future use. The client can 
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then access the protected data from the resource server by presenting the issued access token. The resource 

server validates the access token and, if found to be valid, returns the requested data. However, if the access 

token has expired, the resource server will reject the request and return an error message indicating an invalid 

token. Upon receiving this response, the client can request a new access token by presenting the stored refresh 

token to the authorization server. The authorization server then uses the refresh token to issue a new access 

token. The size of the tokens can vary, with authorization codes being 256 bytes, access tokens at 2048 bytes, 

and refresh tokens at 512 bytes. Access tokens from Google Cloud's Security Token Service API are similar 

to OAuth 2.0 access tokens from Google API but have different size limits [160].  

It is important to consider that a granted refresh token may no longer be valid for a number of reasons, such 

as if the user revokes access to the app, the refresh token hasn't been used in six months, the user changes their 

password and the refresh token contains Gmail scopes, the user account reaches a maximum number of granted 

refresh tokens, or the user belongs to a Google Cloud Platform organization with session control policies in 

place. In case the Google Cloud Platform project with an OAuth consent screen configured for an external user 

type and a publishing status of "Testing," then it is issued a refresh token expiring in 7 days. Additionally, 

there is a limit of 100 refresh tokens per Google Account per OAuth 2.0 client ID and a larger limit on the total 

number of refresh tokens a user or service account can have across all clients. To avoid reaching these limits, 

developers can limit the number of clients authorized per Google Account or create additional users with 

administrative privileges to authorize some of the clients [160]. 

iii. Streamlit 

Streamlit is considered a valuable tool in academia for its ability to easily create web applications directly from 

Python [161]. Despite being relatively new, with its first beta release dating back to April 2019, research teams 

from around the world have begun to adopt the framework to showcase the results of their projects. Today, 

there are many publications that mention Streamlit as the visualization framework of choice, spanning a wide 

range of fields, including health [162], computer science [163], economics [164], and civil engineering [165], 

among others. 

The Streamlit framework provides a platform for creating interactive web applications by combining a 

frontend single-page application (SPA) and a backend server. The framework starts a web server, serving a 

frontend app whose contents are generated based on a Python script written by the user. The frontend app 

communicates continuously with the web server, triggering the execution of the Python code on the server 

whenever events occur. This server-client architecture allows for the creation of interactive web apps solely 

through the implementation of logic in the server-side Python code. 



Real-Time Human Activity Recognition and Indoor Positioning System for the Elderly 

 Page 83 of 229 

 

 

Figure 53: Streamlit framework 

Streamlit is a web framework that differs from others in that it modifies the actual Document Object Model 

(DOM) and its state on the server side to render the final web document that is sent to the browser. This 

approach does not raise any security concerns under normal usage. However, if the code is poorly written and 

user input is not properly sanitized, it may be vulnerable to Remote Code Execution (RCE) attacks, similar to 

the way PHP can be vulnerable. To start a Streamlit web application, the user must run the binary file 

(streamlit.exe on Windows or stream-lit.sh on MacOS or Linux) using the default Python interpreter against 

the target document. This will initialize the application's configuration, including secrets, settings, themes, and 

the Delta Generator (DG). The DG acts as a middleman between the Python script and the ReactJS web 

application that is served by Streamlit. The DG is responsible for efficiently transferring HTML components 

to be rendered on the client side and then retrieving their state. This process is demonstrated in Figure 54 [166].  

 

Figure 54: Streamlit’s Delta Generator (DG) 

The initial render starts at the beginning of the Python document and ends at the last line. However, subsequent 

renders do not start from the beginning of the file, but rather from the component that was interacted with by 

the user or that had its state changed. Each new render of a component is queued in the DG, which will later 

replace it with a new HTML snippet or add it to the final Document Object Model (DOM) among other 
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rendered HTML components. Streamlit components are rendered individually to avoid negatively impacting 

the user's experience with a blank page if the renders take too long. Such delays can occur from extensive 

ongoing computations, waiting for API responses, or even sleep functions [166]. To make it easier to 

understand, Streamlit is referred to as simply inserting HTML into the client's browser. However, it actually 

utilizes ReactJS's virtual DOM to insert elements and manage their state. By understanding this fact and 

looking at Streamlit's source code, it can be seen that Streamlit uses built-in ReactJS components to create a 

fully functional JavaScript web application with the help of Python.  

With Streamlit Cloud, developers can easily connect their GitHub repository and then deploy the application 

with just one click. Streamlit automatically provisions the application with all necessary dependencies and 

updates it every time a new source code is pushed. There is no need for any further input from the developer. 

Additionally, if a developer needs more than one private application, additional computing resources, or 

enterprise-level features, they can upgrade to Streamlit's premium packages. One of the advantages of using 

Streamlit Cloud is the use of Secrets, the ability to securely store private data on Streamlit's servers and easily 

access it in the application [166]. This can be particularly useful for storing sensitive information such as user 

credentials, database connection strings, API keys, and other passwords. By storing this data on Streamlit's 

servers, we do not have to include it in plain text form in the code, which is a security best practice. 

Streamlit Authenticator is used for user authentication in Streamlit applications. It is a simple process that 

involves importing the module and calling it to verify the credentials of predefined users. To set up the 

authentication, a YAML configuration file must be created, and the credentials of the users (names, usernames, 

and plain text passwords) must be defined. Additionally, a name, random key, and number of days for the 

expiry of a JSON Web Token (JWT) cookie that will be stored on the client's browser must be entered to 

enable password-less reauthentication. The Hasher module is then used to convert the plain text passwords 

into hashed passwords [167]. 

 

Figure 55: Bcrypt hashing 

There are multiple methods for hashing a password, such as MD5, SHA256, SHA512, and others. However, 

the most commonly used algorithm by modern systems is Bcrypt. Bcrypt is used by default in Linux 

environments to protect users' passwords. Adding extra bytes to a password, known as adding a salt (Figure 

55), produces a completely different hash. This helps in cases where a user reuses the same password across 

multiple websites and one of them has been breached. This makes it harder for attackers to determine if a user 

has reused the same password and it makes it harder to break the hash. However, this technique will not be 
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effective if the attacker knows the hashing salt and how it is applied. Bcrypt addresses this issue by introducing 

a cryptographic method to store randomly generated salts within the hash. This makes it possible to check if a 

Bcrypt hash is generated from plain text using a function from an abstracted Bcrypt library [166]. 

In order for the server to trust a request, the authentication process must verify a specific identifier, known as 

an "authentication token" or "token" for short. This token is issued by the server and must be verified. Tokens 

can take the form of custom session IDs or JSON Web Tokens (JWTs). In this case, we will use JWTs as they 

do not require the server to store them, making the process stateless. JWTs consist of three main parts that are 

encoded in base64 and separated by a period. The first part contains information about the payload signing 

mechanism, the second holds the raw payload, and the third contains a password-protected signature of the 

payload using the same hashing mechanism as the first part. When a new request is made, the headers will be 

checked for a token. The token's payload will be signed and the signature will be compared to the token's 

signature. If they match, it confirms that the token was issued by the server. For added security, the token will 

have an expiration date (30 days from the time of issuance by default) to prevent attackers from stealing 

legitimate tokens [166].  

The returned name and authentication status can then be used to allow the verified user to access any restricted 

content. Additionally, an optional logout button can be added to the main body or sidebar. To access the 

persistent name, authentication status, and username variables, they can be retrieved through Streamlit's 

session state using st.session_state["name"], st.session_state["authentication_status"], and 

st.session_state["username"]. This allows for the use of Streamlit Authenticator to authenticate users across 

multiple pages. 
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iv. Unified Modeling Language (UML) Diagrams 

a) Sequence Diagram (Nodes) 

 
Figure 56: Sequence diagram of the interaction between the BLE beacon, ESP32s, smartwatch, and Firebase RTDB 
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b) Sequence Diagram (Web App) 

 
Figure 57: Sequence diagram of the interaction between the user, the web app, and Firebase RTDB 
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c) Use Case Diagram (Web App) 

 

Figure 58: Use case diagram showing each actor and their use-cases 
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d) Activity Diagram (Web App) 

 
Figure 59: Activity diagram depicting the operation of the system 
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Chapter 4: Results and Outcomes 

1. Human Activity Recognition 

In this section, the findings of the experiment involving the application of deep learning methods for the 

detection of elderly activities are presented and analyzed. Figure 60 presents the confusion matrix for each 

model, which serves as a representation of the performance of the classification algorithms. The columns in 

the matrix are used to depict the instances predicted to belong to a specific class, while the rows are used to 

depict the instances that actually belong to the said class. Upon inspecting the results, it can be concluded that 

the CNN-LSTM model yielded the most favorable results compared to the actual values, while the ANN model 

yielded the least favorable results. 

 

     (a)       (b) 

 

     (c)       (d) 

Figure 60: Confusion matrix of (a) ANN, (b) CNN, (c) LSTM, (d) CNN-LSTM 

The accuracy and loss curves (training and validation) for the four deep learning models were examined, as 

shown in Figure 61. The results showed that the ANN achieved a validation loss of 0.2213 and a test accuracy 

of 94.51%, while the CNN model recorded a training loss of 0.0388 and a test accuracy of 98.56%. 
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Additionally, the LSTM model achieved a validation loss of 0.0749 and a test accuracy of 97.86%. However, 

the CNN-LSTM model achieved the lowest validation loss and highest test accuracy, which are 0.0370 and 

98.95%, respectively. The validation loss was higher for all models but as the number of epochs progressed, a 

drastic reduction in the loss was observed, leading to the training and validation curves becoming nearly close. 

The training was terminated for both models as a result of the Early Stopping criteria, which was based on the 

completion of a continuous 20-epoch cycle without a decrease in the validation loss. The convergence of the 

training and validation losses at the end of the epoch cycle in the CNN, LSTM, and CNN-LSTM models 

indicates that these models were performing effectively. However, the ANN model’s validation loss did not 

converge to the training loss, which may indicate that the model is underfitting as it is not complex enough to 

capture the patterns in the data.  

 

(a)       (b) 

 

(c)       (d) 

Figure 61: Accuracy and loss curves of (a) ANN, (b) CNN, (c) LSTM, (d) CNN-LSTM 

In this research, the basic parameters of True Positive (TP), True Negative (TN), False Positive (FP), and False 

Negative (FN) were analyzed to determine the dependent parameters of precision, recall, accuracy, and F1-

score. The mathematical calculation of these parameters was conducted to evaluate the results [48]. TP refers 

to the number of correct predictions of the correct activity, while TN represents the number of correct 
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predictions of the incorrect activity. Conversely, FP indicates the number of incorrect predictions of the correct 

activity and FN represents the number of incorrect predictions of the incorrect activity. The precision, recall, 

accuracy, and F1 score were determined through the calculation of the aforementioned parameters. 

 Precision =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)

 Recall =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)

 Accuracy =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)

 F1-score =
(2𝑇𝑃)

(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)

 

(21) 

Moreover, Cohen’s Kappa statistic and ROC AUC will be calculated. The computation of Cohen's Kappa is a 

statistical metric that assesses the inter-annotator agreement in a classification task. This score is calculated as 

the ratio of the observed agreement between two annotators to the expected agreement that would occur under 

random labeling. The formula for this calculation is represented as [168]: 

𝜅 =
𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒
 

(22) 

Where 𝑝𝑜 represents the empirical probability of agreement between the annotators on the label assigned to a 

sample, and 𝑝𝑒 represents the expected agreement that would occur if both annotators were to randomly assign 

labels. The estimation of 𝑝𝑒 is performed through the use of a per-annotator empirical prior over the class 

labels. The Kappa statistic is a measure that ranges from -1 to +1, where the highest value indicates complete 

agreement, and a value of zero or below signifies an agreement that occurs by chance. 

The area under the ROC curve (AUC ROC) is a measure of how well the classifier can distinguish between 

positive and negative classes but can be extended to multiclass classification problems using the One vs. Rest 

(OvR) technique. An AUC ROC of 1.0 represents a perfect classifier, while an AUC ROC of 0.5 represents a 

random classifier [169].  

In addition to the evaluation of these parameters, the processing time was also considered in this study due to 

the complex nature of the dataset. The processing time of the algorithms was measured to gauge their 

efficiency.  
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Table 12: HAR performance metrics 

 Accuracy Loss Precision Recall F1-score 
Cohen's 

Kappa 

ROC 

AUC 

Prediction 

Time 

LSTM 97.86% 0.0749 97.85% 97.86% 97.85% 0.9689 0.9866 1.4973 

CNN 98.56% 0.0388 98.58% 98.56% 98.57% 0.9791 0.9910 0.2407 

CNN-LSTM 98.95% 0.0370 99.03% 98.95% 98.95% 0.9847 0.9934 0.3529 

ANN 94.51% 0.2213 94.46% 94.51% 94.42% 0.9201 0.9657 0.2158 

 

Table 13: HAR per-class F1-score  

 Laying down Sitting Walking Upstairs Downstairs 

LSTM 100% 100% 97% 88% 85% 

CNN 100% 99% 99% 92% 91% 

CNN-LSTM 100% 100% 100% 93% 93% 

ANN 98% 98% 91% 74% 68% 

 

As evident from Table 13, the CNN-LSTM model outperformed the other models in correctly classifying the 

activity for all five activities. On the other hand, the ANN model demonstrated the lowest accuracy in 

classifying all activities. The highest accuracy was achieved by the CNN-LSTM model, with a value of 

98.95%. The analysis of Figure 61 and Table 13 revealed that the majority of misclassified records were 

attributed to the activities of "going upstairs" and "going downstairs", which are similar in nature and hence 

posed challenges for the models to differentiate between them. Figure 62 visualizes the accuracy, precision, 

recall, F1-score, and ROC AUC values of all HAR models. The CNN-LSTM classifier exhibited the best 

accuracy, precision, recall, F1-score, Cohen's Kappa, and ROC AUC values of 98.95%, 99.03%, 98.95%, 

98.95%, 0.9847, 0.9934, respectively. However, the CNN model showed the best prediction time among CNN, 

LSTM, and CNN-LSTM models, with 0.2407 seconds. In conclusion, the proposed CNN-LSTM method 

demonstrated superior overall performance compared to the other deep learning models. Figure 63 visualizes 

the loss and prediction time of all HAR models. 

Despite the highly imbalanced nature of the dataset, the proposed system demonstrated exceptional 

performance. Thus, it can be concluded that the proposed method is capable of detecting the activity of elderly 

people. The study found that CNN-LSTM is more appropriate for the Human Activity Recognition (HAR) of 

elderly people compared to other deep learning architectures. However, if processing time is a crucial factor, 

the CNN model is faster than the CNN-LSTM model and offers a comparable performance to that of the CNN-

LSTM model.  
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Figure 62: Accuracy, precision, recall, and F1-score metrics of the HAR models 

 

Figure 63: Validation loss (left) and prediction time (right) of the HAR models 

  



Real-Time Human Activity Recognition and Indoor Positioning System for the Elderly 

 Page 95 of 229 

 

2. Indoor Positioning System 

In this section, the findings of the experiment involving the application of machine learning classifiers for the 

detection of a patient’s location in a residential care facility are presented and analyzed. Figure 64 presents the 

confusion matrix for each classifier, which serves as a representation of the performance of the classification 

algorithms. The columns in the matrix are used to depict the instances predicted to belong to a specific class, 

while the rows are used to depict the instances that actually belong to the said class. Upon inspecting the 

confusion matrices, it can be concluded that the Random Forest classifier achieved the most favorable results 

compared to the true values. 

Table 14: IPS performance metrics 

Classifier 
Train  

Time 

Mean 

Test 

Time 

Mean 

CV 

Acc. 

CV 

STD 

Test 

Acc. 

Mean 

Precisi-

on 

Mean 

Recall 

Mean 

F1-

score 

Mean 

RandomForestClassifier 0.1610 0.0195 83.61% 0.0257 84.20% 84.48% 84.13% 84.12% 

VotingClassifier 0.5237 0.0274 83.31% 0.0181 83.91% 83.98% 84.03% 83.88% 

GradientBoostingClassifier 0.3584 0.0075 82.72% 0.0300 83.61% 83.71% 83.73% 83.52% 

KNeighborsClassifier 0.0032 0.0121 79.59% 0.0257 80.24% 80.77% 80.48% 80.36% 

SVC_rbf 0.0113 0.0089 78.64% 0.0219 79.88% 80.17% 79.98% 79.96% 

SVC_poly 0.9735 0.0077 79.82% 0.0259 79.65% 79.99% 79.84% 79.71% 

NuSVC 0.0854 0.0105 78.82% 0.0233 79.59% 80.43% 79.54% 79.58% 

DecisionTreeClassifier 0.0036 0.0055 79.94% 0.0290 79.29% 79.29% 79.61% 79.29% 

LinearDiscriminantAnalysis 0.0038 0.0051 80.24% 0.0182 79.17% 79.84% 78.93% 79.06% 

QuadraticDiscriminantAnalysis 0.0033 0.0055 80.06% 0.0218 79.05% 79.77% 79.12% 79.04% 

GaussianNB 0.0032 0.0057 73.49% 0.0268 72.90% 74.12% 72.44% 72.77% 

LinearSVC 0.0590 0.0063 68.93% 0.0747 66.75% 77.55% 68.48% 65.87% 

 

In our study, we utilized the random cross-validation, also known as the shuffle-split cross-validation 

technique, to mitigate the bias of our models. This method is similar to the k-fold cross-validation approach 

where the data is divided into k-folds, with one-fold designated as the test set and the remaining (k − 1) folds 

serving as the training set. The difference between the k-fold cross-validation and the shuffle split cross-

validation lies in the data shuffling after each iteration. In the k-fold cross-validation method, the data is not 

shuffled, while in the shuffle-split cross-validation method, the data is shuffled before being split into training 

and test sets. Our data was shuffled and split (n = 10) times, with random sampling on each iteration. The 

predicted values obtained from the test and training sets in each iteration were not utilized in the development 

of the model, but instead were appended to a list and the error was calculated over the entire dataset. The 
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shuffle split cross-validation method, with a split of 20% for the test set and 80% for the training set, resulted 

in the Random Forest classifier having the highest cross-validation accuracy of 83.61%, but also with a 

relatively high standard deviation of 0.257. However, the Random Forest and Gradient Boosting classifiers 

are faster than the Voting classifier when it comes to testing time. Thus, if processing time is a crucial factor, 

the RFC or GBC would be more appropriate than the Voting Classifier while not losing performance. 

  

Figure 64: Confusion matrices of the 12 IPS models (from left to right): kNN, SVC (Poly), SVC (RBF), RFC, GBC, DT, LinearSVC, NuSVC, 
NB, LDA, QDA, Voting 

(Room names were changed from ‘room_1’, ‘room_2’, and ‘room_3’ to 'Living Room', 'Bedroom', and 'Bathroom', respectively.) 
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Table 14 shows the performance metrics of the IPS models. The five best-performing classifiers with a good 

tradeoff between high cross-validation accuracy and low standard deviation were chosen to be Random Forest, 

Gradient Boosting, Decision Tree, Linear Discriminant Analysis, and Quadratic Discriminant Analysis. A 

Voting Classifier was implemented using a majority ‘hard’ voting of these five classifiers. The Voting 

Classifier was able to achieve the lowest cross-validation standard deviation of all IPS models at just 0.0181, 

as well as the second-highest cross-validation accuracy at 83.31% and second-highest F1-score mean at 

83.88%, coming second to Random Forest.  

Figure 65 visualizes the training time and test time of each of the 12 classifiers, and Figure 66 shows the cross-

validation score mean of each of the 12 classifiers. 

 

Figure 65: IPS classifiers' training time and test time 
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Figure 66: IPS classifiers' cross-validation accuracy mean 
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3. Real-time HAR and IPS via Web App 

This section showcases the real-time activity recognition and indoor positioning Web app and its features. The 

following figures are screenshots taken from the Web app as it is up and running in real-time. 

 

Figure 67: Admin login 

 

 

Figure 68: A system is offline when its components are unreachable/offline 
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Figure 69: Admin dashboard includes the prediction of each HAR model 

 

 

Figure 70: Admin dashboard includes the prediction of each IPS classifier 
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Figure 71: User login 

 

 

Figure 72: User dashboard includes the final HAR predictions 
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Figure 73: User dashboard includes the final IPS predictions 

 

The web app is able to detect two types of events:  

• Inconsistent event: e.g., laying down in the bathroom. 

• Alarming activity: location and activity have not changed for a period of time (configurable setting)  

 

Figure 74: Event detection and warning message 

 

 
Figure 75: Email alert notification 
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Chapter 5: Conclusions and Future Work 

In conclusion, this research aimed to propose a solution that combines artificial intelligence and sensor 

readings to identify five different activities, including walking, sitting, laying down, ascending stairs, and 

descending stairs. To solve the problem, various deep learning models such as Artificial Neural Networks 

(ANNs), Convolutional Neural Networks (CNNs), Long-Short Term Memory (LSTM), and CNN-LSTM were 

employed and their performance was evaluated. The results indicated that the CNN-LSTM model performed 

the best among all the models, with a remarkable F1-score of 98.95%. This outcome emphasizes the potential 

of deep learning and sensor readings in detecting human activities and validates the effectiveness of the CNN-

LSTM model for this specific problem. 

Furthermore, an Indoor Positioning System (IPS) was implemented using the Received Signal Strength 

Indicator (RSSI) measurements of a Bluetooth Low Energy (BLE) beacon. A range of machine learning 

classifiers was employed in this study, including k-Nearest Neighbor (kNN), Support Vector Machine (SVM) 

with linear, polynomial, and RBF kernels, NuSVC, Random Forest, Decision Tree, Gradient Boosting, 

Gaussian Naive Bayes, Linear Discriminant Analysis, and Quadratic Discriminant Analysis. The evaluation 

results revealed that the Random Forest classifier achieved the highest mean F1-score of 84.12%, and the 

Voting Classifier obtained the second-highest mean F1-score of 83.88%. These findings demonstrate the 

potential of utilizing machine learning algorithms and RSSI measurements of BLE beacons for accurate indoor 

positioning. 

In summary, the proposed solution demonstrated the potential of incorporating artificial intelligence and sensor 

readings to detect human activities and accurately determine indoor positioning. The research results suggest 

that deep learning models are more suitable for detecting activities, while machine learning algorithms are 

more effective for indoor positioning. The proposed solution could be applied to a range of real-world 

applications, including wearable devices, smart homes, and healthcare systems. However, further research is 

needed to improve the efficiency and accuracy of the solution and validate its effectiveness in real-world 

scenarios. 

The limitations of the proposed solution and future work include: 

• The current research used a limited dataset collected from a single smartwatch, which may not fully 

reflect the variability of human activities and movements. Future research should aim to collect more 

diverse and larger datasets to improve the generalizability of the proposed solution. 

• The study used a limited number of subjects to collect the data, which may limit the generalization of 

the models to a larger population. In order to further generalize the models, it is important to collect 

data from a larger and more diverse sample of subjects, including individuals of different ages, 

genders, and health conditions. This will help to ensure that the models are robust and can be applied 

to a larger population. 
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• The proposed solution only aimed to detect five classes of activities, which may not cover the full 

range of human activities. Future research could aim to extend the proposed solution to detect a wider 

range of activities and incorporate more complex movements. 

• While the proposed solution demonstrated promising results, there is still room for improvement in 

terms of the optimization of the algorithms used. Future work could focus on fine-tuning the 

algorithms and incorporating advanced deep-learning techniques to improve the performance of the 

solution. 

• The proposed solution was developed as a standalone system and has not been integrated with other 

systems such as wearable devices, smart homes, or health care systems. Future work could aim to 

integrate the solution with these systems to demonstrate its full potential and evaluate its impact on 

real-world applications. 

• The use of RSSI values of a BLE beacon for indoor positioning has some limitations that make it 

unreliable, such as interference of other signals in the environment (e.g., Wi-Fi or Bluetooth signals). 

This can result in inaccurate readings of the RSSI values and thus, unreliable indoor positioning 

results. Another limitation is the variation of the RSSI values over time. The strength of a radio signal 

can vary significantly over time due to changes in the environment, which can result in fluctuations in 

the RSSI values, making it difficult to accurately determine the position of the user. Additionally, the 

range of the BLE beacon is limited, which can also contribute to the unreliability of indoor positioning. 

Future work may include the use of RSSI smoothing, signal filtering, Trilateration, and Kalman 

filtering to improve the accuracy of the indoor positioning results.   

The strengths of the proposed solution include the following: 

• The proposed solution incorporates the use of artificial intelligence, specifically deep learning models, 

to accurately detect human activities. The CNN-LSTM model was shown to outperform other deep 

learning models, demonstrating the potential of incorporating it in human activity recognition. 

• The proposed solution comprehensively compared the performance of four different deep learning 

models (ANN, CNN, LSTM, and CNN-LSTM) to determine the best model for the HAR of elderly 

people. This multi-model comparison allowed for a more thorough evaluation of the solution and 

demonstrated its robustness. 

• The proposed solution achieved a high F1-score of 98.95% for the activity detection task, 

demonstrating its high accuracy in detecting five classes of activities. 

• The solution was designed to perform activity detection and indoor positioning in real time, making it 

suitable for various real-world applications that require quick and accurate results. The use of sensor 

readings from a smartwatch allows for continuous monitoring of the user's activities, and the deep 
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learning models were designed to process the data and make accurate predictions in real time, 

providing quick and precise results. This real-time nature of the solution is crucial for applications that 

require immediate and accurate detection of human activities, such as healthcare and safety systems. 

• The proposed solution not only aimed to detect human activities but also to determine the indoor 

location of the user. The integration of the activity detection and indoor positioning systems showed 

the potential of the solution to be used in various real-world applications. 

• The proposed solution used a voting classifier to improve the accuracy of the indoor positioning task, 

demonstrating the potential of combining multiple classifiers to improve performance. The voting 

classifier achieved a mean F1-score of 83.88%, demonstrating its effectiveness. 

In conclusion, this research aimed to develop a system for monitoring the daily activities and indoor 

positioning of elderly people in order to ensure their health and well-being. The proposed system utilized 

various deep learning and conventional machine learning methods to identify the activities of elderly 

individuals and determine their indoor location. The proposed system has the potential to assist older 

individuals in leading independent lives, fill in resource gaps and understaffing problems in residential care 

facilities, and enhance the care provided. It can also be applied in various other fields where activity monitoring 

and indoor positioning are essential. 
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